Numerical Simulations of 1461 and 1762 San Pio delle Camere (L’Aquila) Earthquakes Using 3D Physic-Based Model | SpringerLink
Skip to main content

Numerical Simulations of 1461 and 1762 San Pio delle Camere (L’Aquila) Earthquakes Using 3D Physic-Based Model

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14111))

Included in the following conference series:

  • 697 Accesses

Abstract

The aim of this paper is to propose a physics-based simulation of the two earthquakes that hit the surrounding area of the city of L’Aquila (Abruzzo central Italy) in 1461 and 1762, with magnitudes 6.4 Mw and 6.0 Mw, respectively. Both events are placed, by the available literature, on the fault structure named San Pio delle Camere [11]. The physical parameters characterizing the earthquake such as fault plane, epicenter, and magnitude are considered to be fixed. Starting from them three stochastic rupture scenarios are generated from each earthquake using three different slip distributions. The scenarios were evaluated in relation to the possibility to reproduce the macroseismic intensity field available from the historical catalogs. The simulated values of peak velocity are used to derive the value of the macrosiesmic intensity obtained by a suitable empirical relationship specifically derived for Italy.

For the numerical simulations we used a three-dimensional soil model used and validated in a previous study related to the 2009 L’Aquila earthquake. The considered slip distributions are able to reproduce quite well the macroseismic effect of the 1461 earthquake. While none of the three scenarios developed satisfactorily reproduce the 1762 earthquake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, J.R., Smerzini, C., Paolucci, R., Lai, C.G.: Numerical study on basin-edge effects in the seismic response of the Gubbio valley, central Italy. Bull. Earthquake Eng. 14(6), 1437–1459 (2016)

    Article  Google Scholar 

  2. Aki, K., Richards, P.G.: Quantitative seismology (2002)

    Google Scholar 

  3. Antonietti, P.F., et al.: Three-dimensional physics-based earthquake ground motion simulations for seismic risk assessment in densely populated urban areas. Math. Eng. 3(2), 1–31 (2021). https://doi.org/10.3934/mine.2021012, https://www.aimspress.com/article/doi/10.3934/mine.2021012

  4. Antonietti, P.F., Ayuso de Dios, B., Mazzieri, I., Quarteroni, A.: Stability analysis of discontinuous Galerkin approximations to the elastodynamics problem. J. Sci. Comput. 68–1, 143–170 (2016)

    Google Scholar 

  5. Antonietti, P.F., Mazzieri, I., Quarteroni, A., Rapetti, F.: Non-conforming high order approximations of the elastodynamics equation. Comput. Meth. Appl. Mech. Eng. 209, 212–238 (2012)

    Article  MathSciNet  Google Scholar 

  6. Antonietti, P., et al.: Numerical modeling of seismic waves by discontinuous spectral element methods. ESAIM: Proc. Surv. 61(1–37) (2018)

    Google Scholar 

  7. Anzidei, M., et al.: Coseismic deformation of the destructive April 6, 2009 l’aquila earthquake (central Italy) from GPS data. Geophy. Res. Lett. 36(17) (2009)

    Google Scholar 

  8. Baron, J., Primofiore, I., Klin, P., Vessia, G., Laurenzano, G.: Investigation of topographic site effects using 3D waveform modelling: amplification, polarization and torsional motions in the case study of arquata del tronto (italy). Bull. Earthquake Eng. 20(2), 677–710 (2022)

    Article  Google Scholar 

  9. Basili, R., et al.: Database of individual seismogenic sources (diss), version 3.3. 0: A compilation of potential sources for earthquakes larger than m 5.5 in Italy and surrounding areas (2021)

    Google Scholar 

  10. Bilal, M., Askan, A.: Relationships between felt intensity and recorded ground-motion parameters for turkey. Bull. Seismolog. Soc. Am. 104(1), 484–496 (2014)

    Article  Google Scholar 

  11. Boncio, P., Lavecchia, G., Pace, B.: Defining a model of 3D seismogenic sources for seismic hazard assessment applications: the case of central Apennines (Italy). J. Seismolog. 8, 407–425 (2004)

    Article  Google Scholar 

  12. Di Michele, F., et al.: On the possible use of the not-honoring method to include a real thrust into 3D physical based simulations. In: 2021 21st International Conference on Computational Science and its applications (ICCSA), pp. 268–275. IEEE (2021)

    Google Scholar 

  13. Di Michele, F., et al.: Spectral element numerical simulation of the 2009 L’aquila earthquake on a detailed reconstructed domain. Geophys. J. Int. 230(1), 29–49 (2022)

    Article  Google Scholar 

  14. Di Michele, F., et al.: Fault shape effect on SH waves using finite element method. J. Seismol. 1–21 (2022)

    Google Scholar 

  15. Evangelista, L., et al.: Physics-based seismic input for engineering applications: a case study in the Aterno river valley, central Italy. Bull. Earthq. Eng. 15(7), 2645–2671 (2017)

    Article  Google Scholar 

  16. Faccioli, E., Cauzzi, C.: Macroseismic intensities for seismic scenarios estimated from instrumentally based correlations. In: Proceedings of the First European Conference on Earthquake Engineering and Seismology, paper. No. 569 (2006)

    Google Scholar 

  17. Faccioli, E., Maggio, F., Paolucci, R., Quarteroni, A.: 2D and 3D elastic wave propagation by a pseudo-spectral domain decomposition method. J. Seismolog. 1(3), 237–251 (1997)

    Article  Google Scholar 

  18. Faenza, L., Michelini, A.: Regression analysis of MCS intensity and ground motion parameters in Italy and its application in Shakemap. Geophys. J. Int. 180(3), 1138–1152 (2010)

    Article  Google Scholar 

  19. Faenza, L., Michelini, A.: Regression analysis of MCS intensity and ground motion spectral accelerations (SAS) in Italy. Geophys. J. Int. 186(3), 1415–1430 (2011)

    Article  Google Scholar 

  20. Falcucci, E., et al.: The paganica fault and surface coseismic ruptures caused by the 6 April 2009 earthquake (L’aquila, central Italy). Seismol. Res. Lett. 80(6), 940–950 (2009)

    Article  Google Scholar 

  21. Ferroni, A., Antonietti, P.F., Mazzieri, I., Quarteroni, A.: Dispersion-dissipation analysis of 3-D continuous and discontinuous spectral element methods for the elastodynamics equation. Geophys. J. Int. 211–3, 1554–1574 (2017)

    Article  Google Scholar 

  22. Gao, Y., Zhang, N.: Scattering of cylindrical SH waves induced by a symmetrical v-shaped canyon: near-source topographic effects. Geophys. J. Int. 193(2), 874–885 (2013)

    Article  Google Scholar 

  23. Gomez Capera, A., Albarello, D., Gasperini, P., et al.: Aggiornamento relazioni fra l’intensità macrosismica e pga. progetto ingv-dpc s1, deliverable d11 (2007)

    Google Scholar 

  24. Gomez Capera, A., et al.: Macroseismic intensity to ground motion empirical relationships for Italy. In: Proceedings, vol. 37, pp. 289–291 (2018)

    Google Scholar 

  25. GSSI: Open data L’aquila (2019). https://www.opendatalaquila.it/

  26. GSSI: Open data ricostruzione (2019). https://opendataricostruzione.gssi.it/home

  27. Guidoboni, E., et al.: Cfti5med, the new release of the catalogue of strong earthquakes in Italy and in the Mediterranean area. Sci. Data 6(1), 1–15 (2019)

    Article  MathSciNet  Google Scholar 

  28. Guidoboni, E., et al.: Cfti5med, catalogo dei forti terremoti in italia (461 ac-1997) e nell’area mediterranea (760 ac-1500) (2018)

    Google Scholar 

  29. Imperatori, W., Mai, P.M.: The role of topography and lateral velocity heterogeneities on near-source scattering and ground-motion variability. Geophys. J. Int. 202(3), 2163–2181 (2015)

    Article  Google Scholar 

  30. Infantino, M., Mazzieri, I., Özcebe, A.G., Paolucci, R., Stupazzini, M.: 3d physics-based numerical simulations of ground motion in Istanbul from earthquakes along the Marmara segment of the north Anatolian fault. Bull. Seismol. Soc. Am. 110–5, 2559–2576 (2020)

    Article  Google Scholar 

  31. J. Schmedes, R.J.A., Lavallée, D.: A kinematic rupture model generator incorporating spatial interdependency of earthquake source parameters (2013)

    Google Scholar 

  32. Karimzadeh, S., Askan, A.: Modeling of a historical earthquake in erzincan, turkey (ms\(\tilde{~}\) 7.8, in 1939) using regional seismological information obtained from a recent event. Acta Geophysica 66(3), 293–304 (2018)

    Google Scholar 

  33. Lewis, M., Peng, Z., Ben-Zion, Y., Vernon, F.: Shallow seismic trapping structure in the san Jacinto fault zone near Anza, California. Geophys. J. Int. 162(3), 867–881 (2005)

    Article  Google Scholar 

  34. Magnoni, F., et al.: Spectral-element simulations of seismic waves generated by the 2009 L’aquila earthquake. Bull. Seismol. Soc. Am. 104(1), 73–94 (2013)

    Article  Google Scholar 

  35. May, J., Pera, D., Di Michele, F., Rubino, B., Aloisio, R., Marcati, P.: Fast cubit-python tool for highly accurate topography generation and layered domain reconstruction. In: 29th International Meshing Roundtable (2021)

    Google Scholar 

  36. Mazzieri, I., Stupazzini, M., Guidotti, R., Smerzini, C.: Speed: spectral elements in elastodynamics with discontinuous galerkin: a non-conforming approach for 3D multi-scale problems. Int. J. Numer. Meth. Eng. 95(12), 991–1010 (2013)

    Article  MathSciNet  Google Scholar 

  37. Oliveti, I., Faenza, L., Michelini, A.: New reversible relationships between ground motion parameters and macrosesmic intensity for Italy and their application in shakemap. Geophys. J. Int. 231(2), 1117–1137 (2022)

    Article  Google Scholar 

  38. Paolucci, R., Evangelista, L., Mazzieri, I., Schiappaterra, E.: The 3D numerical simulation of near-source ground motion during the marsica earthquake, central Italy, 100 years later. Soil Dyn. Earthq. Eng. 91, 39–52 (2016)

    Article  Google Scholar 

  39. Paolucci, R., Mazzieri, I., Özcebe, A.G., Smerzini, C.: Anatomy of strong ground motion: near-source records and three-dimensional physics-based numerical simulations of the mw 6.0 2012 may 29 Po plain earthquake, Italy. Geophysical Journal International 203–3, 2001–2020 (2015)

    Google Scholar 

  40. Paolucci, R., Mazzieri, I., Piunno, G., Smerizni, C., Vanini, M., Özcebe, A.G.: Earthquake ground motion modeling of induced seismicity in the Groningen gas field. Earthquake Eng. Struct. Dyn. 50–1, 135–154 (2021)

    Article  Google Scholar 

  41. Paolucci, R., Evangelista, L., Mazzieri, I., Schiappapietra, E.: The 3d numerical simulation of near-source ground motion during the Marsica earthquake, central Italy, 100 years later. Soil Dyn. Earthq. Eng. 91, 39–52 (2016)

    Article  Google Scholar 

  42. Pera, D.: Design and performance evaluation of a Linux HPC cluster. Task Quart. 22(2), 113–123 (2018)

    MathSciNet  Google Scholar 

  43. Pilz, M., Parolai, S., Stupazzini, M., Paolucci, R., Zschau, J.: Modelling basin effects on earthquake ground motion in the santiago de chile basin by a spectral element code. Geophys. J. Int. 187(2), 929–945 (2011)

    Article  Google Scholar 

  44. Rodriguez-Plata, R., Ozcebe, A., Smerzini, C., Lai, C.: Aggravation factors for 2d site effects in sedimentary basins: the case of Norcia, central Italy. Soil Dyn. Earthq. Eng. 149, 106854 (2021)

    Article  Google Scholar 

  45. Rovida, A., Locati, M., Camassi, R., Lolli, B., Gasperini, P.: The Italian earthquake catalogue cpti15. Bull. Earthq. Eng. 18(7), 2953–2984 (2020)

    Article  Google Scholar 

  46. Rovida, A., Locati, M., Camassi, R., Lolli, B., Gasperini, P., Antonucci, A.: Catalogo parametrico dei terremoti italiani (cpti15). versione 4.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). Italy (2022)

    Google Scholar 

  47. Smerzini, C., Villani, M.: Broadband numerical simulations in complex near-field geological configurations: the case of the 2009 m w 6.3 L’aquila earthquake. Bull. Seismol. Soc. Am. 102(6), 2436–2451 (2012)

    Google Scholar 

  48. Stupazzini, M., Infantino, M., Allmann, A., Paolucci, R.: Physics-based probabilistic seismic hazard and loss assessment in large urban areas: a simplified application to Istanbul. Earthquake Eng. Struct. Dyn. 50(1), 99–115 (2021)

    Article  Google Scholar 

  49. Tarquini, S., et al.: Tinitaly/01: a new triangular irregular network of Italy. Ann. Geophys. (2007)

    Google Scholar 

  50. Tarquini, S., Nannipieri, L.: The 10 m-resolution Tinitaly dem as a trans-disciplinary basis for the analysis of the Italian territory: current trends and new perspectives. Geomorphology 281, 108–115 (2017)

    Article  Google Scholar 

  51. Tarquini, S., Vinci, S., Favalli, M., Doumaz, F., Fornaciai, A., Nannipieri, L.: Release of a 10-m-resolution dem for the Italian territory: Comparison with global-coverage Dems and anaglyph-mode exploration via the web. Comput. Geosci. 38(1), 168–170 (2012)

    Article  Google Scholar 

  52. Tiberi, L., Costa, G., Jamšek Rupnik, P., Cecić, I., Suhadolc, P.: The 1895 Ljubljana earthquake: can the intensity data points discriminate which one of the nearby faults was the causative one? J. Seismolog. 22(4), 927–941 (2018)

    Article  Google Scholar 

  53. Veeraraghavan, S., Coleman, J.L., Bielak, J.: Simulation of site and topographic effects on ground motion in los alamos, nm mesas. Geophys. J. Int. 220(3), 1504–1520 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This paper is part of a larger project focused on the post-earthquake reconstruction of the city of L’Aquila (see https://www.opendatalaquila.it) and was partially supported by the GSSI “Centre for Urban Informatics and Modelling” (CUIM). This paper received financial support from ICSC - Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing, funded by European Union - NextGenerationEU (ref. Prof. B. Rubino and Dr. D. Pera. University of L’Aquila). All numerical simulations have been realized on the Linux HPC cluster Caliban of the High Performance Parallel Computing Laboratory of the Department of Information Engineering, Computer Science and Mathematics (DISIM) at the University of L’Aquila.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donato Pera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pera, D., Di Michele, F., Stagnini, E., Rubino, B., Aloisio, R., Marcati, P. (2023). Numerical Simulations of 1461 and 1762 San Pio delle Camere (L’Aquila) Earthquakes Using 3D Physic-Based Model. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14111. Springer, Cham. https://doi.org/10.1007/978-3-031-37126-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37126-4_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37125-7

  • Online ISBN: 978-3-031-37126-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics