Thermodynamic Analysis of Digestate Pyrolysis Coupled with CO2 Sorption | SpringerLink
Skip to main content

Thermodynamic Analysis of Digestate Pyrolysis Coupled with CO2 Sorption

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Abstract

To date the management of digestate is a crucial task for anaerobic digestion process. In the present work a strategy for digestate management is thermodynamically analyzed by a commercial software for process simulation called CHEMCAD®. Pyrolysis of digestate is simulated by a minimization of the free Gibbs energy. The sequestration of the carbon dioxide (CO2) released by the pyrolysis is investigated by the addition of calcium oxide, in order to reduce CO2 emissions. The effect of the pyrolysis temperature between 400–900 ℃ and of the CaO/digestate mass ratio between 0–0.5 was discussed, as well. The CHEMCAD application allowed to investigate the chemisorption behaviour by focusing on the temperature-dependent CO2 sorption trends in relation to different values of the CaO mass ratio. Temperature below 650 ℃ should be considered for CO2 sorption by CaO. CO2 molar fraction below 10% was obtained for temperature below 450 ℃ and CaO/digestate mass ratio higher than 0.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hussain, C.M., Paulraj, M.S., Nuzhat, S.: Source reduction, waste minimization, and cleaner technologies. In: Chapter 2: Source Reduction and Waste Minimization, pp. 23–59 (2022)

    Google Scholar 

  2. González, R., González, J., Rosas, J.G., Smith, R., Gómez, X.: Biochar and energy production: Valorizing swine manure through coupling co-digestion and pyrolysis. Carbon 6(2), 43 (2020)

    Google Scholar 

  3. Freda, C., Nanna, F., Villone, A., Barisano, D., Brandani, S., Cornacchia, G.: Air gasification of digestate and its co-gasification with residual biomass in a pilot scale rotary kiln. Int. J. Energy Environ. Eng. 10(3), 335–346 (2019). https://doi.org/10.1007/s40095-019-0310-3

    Article  Google Scholar 

  4. Stauffer, E., Dolan, J.A., Newman, R.: Fire debris analysis. Academic Press (2007)

    Google Scholar 

  5. Irwin, W.J.: Chromatographic Science Series. In: Analytical Pyrolysis - A Comprehensive Guide, vol. 22. Marcel Dekker, New York (1982)

    Google Scholar 

  6. Ibrahim, H.A.H.: Introductory chapter: pyrolysis. Recent Advances in Pyrolysis, 1. BoD – Book on Demand (2020)

    Google Scholar 

  7. Zaman, C.Z., et al.: Pyrolysis: a sustainable way to generate energy from waste. vol. 1, p. 316806. Rijeka, Croatia: IntechOpen (2017)

    Google Scholar 

  8. Roddy, D.J., Manson-Whitton, C.: Biomass gasification and pyrolysis. Comprehensive Renewable Energy-Biomass & Biofuels (2013)

    Google Scholar 

  9. Lam, M.K., Lee, K.T.: Production of biodiesel using Palm oil. Biofuels: alternative feedstocks and conversation process, pp. 353–374 (2011)

    Google Scholar 

  10. Zhang, D.: Ash fouling, deposition and slagging in ultra-supercritical coal power plants. In: Ultra-Supercritical Coal Power Plants, pp. 133–183 (2013)

    Google Scholar 

  11. Konopacka-Łyskawa, D., Czaplicka, N., Szefer, A.: CaO-based high temperature CO2 sorbents–Literature review. In: Chemical and Process Engineering-Inżynieria Chemiczna i Procesowa 42, pp. 411–438 (2021)

    Google Scholar 

  12. Sreenivasulu, B., Sreedhar, I., Suresh, P., Raghavan, K.V.: Development trends in porous adsorbents for carbon capture. Environ. Sci. Technol. 49(21), 12641–12661 (2015)

    Article  Google Scholar 

  13. Perejon, A., Romeo, L.M., Lara, Y., Lisbona, P., Martinez, A., Valverde, J.M.: The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior. Appl. Energy 162, 787–807 (2016)

    Article  Google Scholar 

  14. Chen, D., Cen, K., Cao, X., Li, Y., Zhang, Y., Ma, H.: Restudy on torrefaction of corn stalk from the point of view of deoxygenation and decarbonization. J. Anal. Appl. Pyrol. 135, 85–93 (2018)

    Article  Google Scholar 

  15. Acharya, B., Dutta, A., Basu, P.: Chemical-looping gasification of biomass for hydrogen-enriched gas production with in-process carbon dioxide capture. Energy Fuels 23(10), 5077–5083 (2009)

    Article  Google Scholar 

  16. Acharya, B., Dutta, A., Basu, P.: An investigation into steam gasification of biomass for hydrogen enriched gas production in presence of CaO. Int. J. Hydrogen Energy 35(4), 1582–1589 (2010)

    Article  Google Scholar 

  17. Guoxin, H., Hao, H.: Hydrogen rich fuel gas production by gasification of wet biomass using a CO2 sorbent. Biomass Bioenerg. 33(5), 899–906 (2009)

    Article  Google Scholar 

  18. Han, L., Wang, Q., Yang, Y., Yu, C., Fang, M., Luo, Z.: Hydrogen production via CaO sorption enhanced anaerobic gasification of sawdust in a bubbling fluidized bed. Int. J. Hydrogen Energy 36(8), 4820–4829 (2011)

    Article  Google Scholar 

  19. Wei, L., Xu, S., Liu, J., Liu, C., Liu, S.: Hydrogen production in steam gasification of biomass with CaO as a CO2 absorbent. Energy Fuels 22(3), 1997–2004 (2008)

    Article  Google Scholar 

  20. Wisniewski, D., Gołaszewski, J., Białowiec, A.: The pyrolysis and gasification of digestate from agricultural biogas plant. Archives of Environmental Protection 41(3), 70–75 (2015)

    Article  Google Scholar 

  21. Doukeh, R., Bombos, M., Bombos, D., Vasilievici, G., Radu, E., Oprescu, E.-E.: Pyrolysis of digestate from anaerobic digestion on tungsten oxide catalyst. React. Kinet. Mech. Catal. 132(2), 829–838 (2021). https://doi.org/10.1007/s11144-021-01952-7

    Article  Google Scholar 

  22. Petrovič, A., et al.: Pyrolysis of solid digestate from sewage sludge and lignocellulosic biomass: Kinetic and thermodynamic analysis, characterization of biochar. Sustainability 13(17), 9642 (2021)

    Article  Google Scholar 

  23. Liu, J., Huang, S., Chen, K., Wang, T., Mei, M., Li, J.: Preparation of biochar from food waste digestate: pyrolysis behavior and product properties. Biores. Technol. 302, 122841 (2020)

    Article  Google Scholar 

  24. Freda, C., Tarquini, P., Sharma, V.K., Braccio, G.: Thermodynamic improvement of solar driven gasification compared to conventional one. Energy 261, 124953 (2022)

    Article  Google Scholar 

  25. Mendiburu, A.Z., Carvalho, J.A., Jr., Coronado, C.J.: Thermochemical equilibrium modeling of biomass downdraft gasifier: Stoichiometric models. Energy 66, 189–201 (2014)

    Article  Google Scholar 

  26. Mendiburu, A.Z., Carvalho, J.A., Jr., Zanzi, R., Coronado, C.R., Silveira, J.L.: Thermochemical equilibrium modeling of a biomass downdraft gasifier: Constrained and unconstrained non-stoichiometric models. Energy 71, 624–637 (2014)

    Article  Google Scholar 

  27. Freda, C., Della Vittoria, U., Fanelli, E., Cornacchia, G., Braccio, G.: Thermodynamic analysis of biomass gasification by different agents. Italian J. Eng. Sci. (2020)

    Google Scholar 

  28. Gartman, T.N., Sovetin, F.S., Novikova, D.K.: Experience in the application of the CHEMCAD program to the modeling of reactor processes. Theor. Found. Chem. Eng. 43, 944–954 (2009)

    Article  Google Scholar 

  29. ECN Phyllis Classification: Database for the physicochemical composition of (treated) lignocellulosic biomass, micro- and macroalgae, various feedstocks for biogas production and biochar, https://phyllis.nl/Browse/Standard/ECN-Phyllis#digestate, last accessed 07 May 2023

  30. Čater, M., Fanedl, L., Malovrh, Š, Logar, R.M.: Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria. Biores. Technol. 186, 261–269 (2015)

    Article  Google Scholar 

  31. Szymanska, M., et al.: A bio-refinery concept for n and p recovery – a chance for biogas plant development. Energies 12, 155 (2019)

    Article  Google Scholar 

  32. Sathyan, A., Haq, I., Kalamdhad, A. S., Khwaraikpam, M.: Recent advancements in anaerobic digestion: A Novel approches for waste to energy. In: Advanced Organic Waste Management, pp. 233–246. Elsevier (2022)

    Google Scholar 

  33. Fabbri, D., Torri, C.: Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass. Curr. Opin. Biotechnol. 38, 167–173 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Dimotta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dimotta, A., Freda, C. (2023). Thermodynamic Analysis of Digestate Pyrolysis Coupled with CO2 Sorption. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14111. Springer, Cham. https://doi.org/10.1007/978-3-031-37126-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37126-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37125-7

  • Online ISBN: 978-3-031-37126-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics