Quadratically Transformed Luminance Chrominance Spaces | SpringerLink
Skip to main content

Quadratically Transformed Luminance Chrominance Spaces

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Abstract

Several color spaces defined in the literature are obtained from the RGB space through non-linear transforms, potentially limiting their applicability in a regularization context. Therefore, in this paper, we introduce three new color spaces, QTLC-\(r_*^2\), QTLC-\(g_*^2\), and QTLC-\(r_* g_*\), and the corresponding quadratic mappings from the RGB space. To test their uniformity, we use them to consider the image defading problem through a novel two-step technique: first, we define a fast heuristic to restore the natural color saturation; then, we propose a regularization technique to deblur the image. We experimentally observe that presumably thanks to its higher uniformity, the QTLC-\(r_* g_*\) space produces natural-looking images in the reconstruction and should be preferred to the QTLC-\(r_*^2\) and QTLC-\(g_*^2\) spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, A.M.T.: Color restoration techniques for faded colors of old photos, printings, and paintings. In: Proceedings of 2009 IEEE International Conference on Electro/Information Technology, pp. 151–156 (2009)

    Google Scholar 

  2. Boccuto, A., Gerace, I.: Image reconstruction with a non-parallelism constraint. In: Proceedings of the International Workshop on Computational Intelligence for Multimedia Understanding, Reggio Calabria, Italy, 27–28 October 2016, pp. 1–5. IEEE Conference Publications (2016)

    Google Scholar 

  3. Boccuto, A., Gerace, I., Giorgetti, V., Rinaldi, M.: A fast algorithm for the demosaicing problem concerning the Bayer pattern. Open Signal Process. J. 6, 1–14 (2019)

    Article  Google Scholar 

  4. Boccuto, A., Gerace, I., Martinelli, F.: Half-quadratic image restoration with a non-parallelism constraint. J. Math. Imaging Vision 59(2), 270–295 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boccuto, A., Gerace, I., Pucci, P.: Convex approximation technique for interacting line elements deblurring: A new approach. J. Math. Imag. Vis. 44(2), 168–184 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bruni, V., Ramponi, G., Restrepo, A., Vitulano, D.: Context-based defading of archive photographs. EURASIP J. Image Video Process. 2009 986183 (2009)

    Google Scholar 

  7. Cricco, F., De Santi, G., Gerace, I.: A deterministic algorithm for deblurring considering higher order smoothness constraints. In: Proceedings of the 2003 International Workshop on Spectral Methods and Multirate Signal Processing (SMMSP) 2004, Vienna, pp. 325–332 (2004)

    Google Scholar 

  8. Demoment, G.: Image reconstruction and restoration: Overview of common estimation structures and problems. IEEE Trans. Acoust. Speech Signal Process. 37, 2024–2036 (1989)

    Article  Google Scholar 

  9. Ebner, F., Fairchild, M.: Development and testing of a color space with improved hue uniformity. In: Proceedings of The Sixth Color Imaging Conference: Color Science, Systems, and Applications, Scottsdale, Arizona, USA, pp. 8–13 (1998)

    Google Scholar 

  10. Evangelopoulos, X., Brockmeier, A.J., Mu, T., Goulermas, J.Y.: A graduated non-convexity relaxation for large-scale seriation. In: Proceedings of the 2017 SIAM International Conference on Data Mining, Houston, Texas, pp. 462–470 (2017)

    Google Scholar 

  11. Fairchild, M.D.: Color and Image Appearance Models. Color Appearance Models. John Wiley and Sons (2005)

    Google Scholar 

  12. Gerace, I., Martinelli, F., Pucci, P.: A deterministic algorithm for optical flow estimation. Commun. Appl. Indust. Math. 1(2), 249–268 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Gunturk, B.K., Altunbasak, Y., Mersereau, R.M.: Color plane interpolation using alternating projections. IEEE Trans. Image Process. 11(9), 997–1013 (2002)

    Article  Google Scholar 

  14. Hazan, E., Levy, K.Y., Shalev-Shwartz, S.: On graduated optimization for stochastic non-convex problems. In: Proceedings of the 33rd International Conference on Machine Learning, New York, 2016. JMLR: W & CP, vol. 48, pp. 1–9 (2016)

    Google Scholar 

  15. Kyung, W.J., Kim, K.M., Kim, D.C., Ha, Y.H.: Color correction for a faded image using classification in LCybCrg color space. In: 2011 IEEE International Conference on Consumer Electronics-Berlin (ICCE-Berlin), pp. 189–193 (2011)

    Google Scholar 

  16. Liu, W., Ribeiro, E.: A survey on image-based continuum-body motion estimation. Image Vis. Comput. 29(8), 509–523 (2011)

    Article  Google Scholar 

  17. Liu, Z.-Y., Qiao, H.: GNCCP-graduated nonconvexity and concavity procedure. IEEE Trans. Pattern Anal. Mach. Intell. 36(6), 1258–1267 (2014)

    Article  Google Scholar 

  18. Liu, Z.-Y., Qiao, H., Su, J.-H.: MAP inference with MRF by graduated non-convexity and concavity procedure. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A., Huang, K. (eds.) ICONIP 2014. LNCS, vol. 8835, pp. 404–412. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12640-1_49

  19. Nikitenko, D., Wirth, M., Trudel, K.: Applicability of white-balancing algorithms to restoring faded colour slides: An empirical evaluation. J. Multim. 3(5), 9–18 (2008)

    Article  Google Scholar 

  20. Restrepo, A., Ramponi, G.: Filtering and luminance correction for aged photographs. In: Image Processing: Algorithms and Systems VI, Proceedings of SPIE, San Jose, Calif, vol. 6812, pp. 26–31 (2008)

    Google Scholar 

  21. Panetta, K.A., Wharton, E.J., Agaian, S.S.: Human visual system-based image enhancement and logarithmic contrast measure. IEEE Trans. Syst. Man Cybernet. 38(1), 174–188 (2008)

    Article  Google Scholar 

  22. Smith, T., Egeland, O.: Dynamical pose estimation with graduated non-convexity for outlier robustness. Model. Identificat. Control 43(2), 79–89 (2022)

    Article  Google Scholar 

  23. Yang, H., Antonante, P., Tzoumas, V., Carlone, L.: Graduated non-convexity for robust spatial perception: From non-minimal solvers to global outlier rejection. IEEE Robot. Automat. Lett. 5(2), 1127–1134 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Biondi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Biondi, G., Boccuto, A., Gerace, I. (2023). Quadratically Transformed Luminance Chrominance Spaces. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14108. Springer, Cham. https://doi.org/10.1007/978-3-031-37117-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37117-2_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37116-5

  • Online ISBN: 978-3-031-37117-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics