A Spatial Statistical Approach for the Analysis of Urban Poverty | SpringerLink
Skip to main content

A Spatial Statistical Approach for the Analysis of Urban Poverty

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14106))

Included in the following conference series:

  • 658 Accesses

Abstract

The paper analyses the concept of poverty through a multidimensional approach that uses multiple indicators to define a condition of poverty and allows to denote territorial areas and/or population subgroups characterized by situations of hardship or severe social exclusion. This study responds to need of defining and constructing indicators that are capable of estimating poverty in small areas. The complexity of the poverty phenomenon thus poses the need to identify analytical techniques that allow poverty to be framed in a broader context, to improve knowledge of the problem and deal with it through specific economic and social interventions. The data analysed in this paper allowed the construction of three sets of indicators referring to three areas of poverty: economic, social, and housing. The data refer to one Italian region: Apulia. Two methodologies were adopted to study the data. The first based on the Fuzzy approach that uses the technique of Fuzzy Sets to synthesize and measure the incidence of relative poverty in the considered population starting from the statistical information provided by a plurality of indicators. The second, based on a cluster analysis algorithm: the DBSCAN method for identifying dense areas from the fuzzy values processed by the first methodology.

The contribution is the result of joint reflections by the authors, with the following contributions attributed to A. Massari (paragraphs 1 and 4), to P. Perchinunno (paragraph 3.2) and to S. L’Abbate (paragraphs 3.1, 3.3), to M. Carbonara (paragraph 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9723
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12154
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Analisi della povertà relativa Siqual, Istat 1997. http://siqual.istat.it/SIQual/visualizza.do?id=8888916&refresh=true&language=IT

  2. La misura della povertà assoluta. Istat 2009. https://ebiblio.istat.it/digibib/Metodi%20e%20norme/MOD1546628Ed2009N39.pdf

  3. Zadeh, L.A: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Google Scholar 

  4. Poli, G., Muccio, E., Cerreta, M.: Circular, cultural and creative city index: a comparison of indicators-based methods with a machine-learning approach. Aestimum 81, 53–70 (2022). https://doi.org/10.36253/aestim-13880

    Article  Google Scholar 

  5. Cerreta, M., Panaro, S., Poli, G.: A knowledge-based approach for the implementation of a SDSS in the Partenio Regional Park (Italy). In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9789, pp. 111–124. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42089-9_8

    Chapter  Google Scholar 

  6. Dubois, D., Prade, H.: Fuzzy Sets and Systems. Academic Press, Boston, New York London (1980)

    MATH  Google Scholar 

  7. Cerioli, A., Zani, S.: A fuzzy approach to the measurement of poverty. In: Dagum, C., Zenga, M. (eds.) Income and Wealth Distribution, inequality and Poverty. Springer, Berlin (1990). https://doi.org/10.1007/978-3-642-84250-4_18

  8. Cheli, B., Lemmi, A.A.: Totally fuzzy and relative approach to the multidimensional analysis of poverty. Econ. Notes 24(1), 115–134 (1995)

    Google Scholar 

  9. Montrone, S., Perchinunno, P., Rotondo, F., Torre, C.M., Di Giuro, A.: Identification of hot spots of social and housing difficulty in urban areas: scan statistic for housing market and urban planning policies. In: Murgante, B., Borruso, G., Lapucci, A. (eds.) Geocomputation and Urban Planning, Studies in Computational Intelligence, Vol. 176, pp. 57–78. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-89930-3_4

  10. Perchinunno, P., Rotondo, F., Torre, C.M.: A multivariate fuzzy analysis for the regeneration of urban poverty areas. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008. LNCS, vol. 5072, pp. 137–152. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69839-5_11

    Chapter  Google Scholar 

  11. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland (1996)

    Google Scholar 

  12. Massari, A., L’Abbate, S., Mongelli, L., Perchinunno, P.: Spatial statistical model for the analysis of poverty in Italy according to sustainable development goals. In: Lecture Notes in Computer Science, vol. 13378 (2022). https://doi.org/10.1007/978-3-031-10562-3_45. ISBN: 978-3-031-10535-7

  13. Perchinunno, P., Massari, A., L’Abbate, S., Mongelli, L.: Sustainable Development Goals per l’analisi statistica della povertà. Metodi e analisi statistiche, Dipartimento di Economia e Finanza, Università degli studi di Bari Aldo Moro., pp. 27–40 (2022). ISBN 978-88-6629-078-0

    Google Scholar 

  14. Perchinunno, P., Rotondo, F., Mongelli, L., L’Abbate, S.: Ecological transition and sustainable development integrated statistical indicators to support public policies. Sci. Rep. 12, 18513 (2022). https://doi.org/10.1038/s41598-022-23085-0

    Article  Google Scholar 

  15. Anelli, D., Tajani, F.: Spatial decision support systems for effective ex-ante risk evaluation: an innovative model for improving the real estate redevelopment processes. Land Use Policy 128, 106595 (2023)

    Article  Google Scholar 

  16. Anelli, D., Tajani, F., Ranieri, R.: Urban resilience against natural disasters: mapping the risk with an innovative indicators-based assessment approach. J. Clean. Prod. 371, 133496 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Perchinunno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perchinunno, P., Massari, A., L’Abbate, S., Carbonara, M. (2023). A Spatial Statistical Approach for the Analysis of Urban Poverty. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14106. Springer, Cham. https://doi.org/10.1007/978-3-031-37111-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37111-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37110-3

  • Online ISBN: 978-3-031-37111-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics