A Methodological Framework to Assess Individual Sustainable Behavior | SpringerLink
Skip to main content

A Methodological Framework to Assess Individual Sustainable Behavior

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Abstract

Cities are privileged places in which the transition of society towards a sustainable future could be achieved. In this direction, individuals could have a preeminent impact in the attempt to meet such target.

To engage individuals in the more responsible use of resources, more sustainable behavior and environmental identity within citizens has to be promoted. To support the transition of citizens behavioral patterns toward a more sustainable use of resources, several tools have been proposed, especially in the Human-Computer Interaction field. Such tools are rarely used more than once by users, thus usually they fail in promoting a stable engagement of the user, and their efficacy in fostering a change in her environmental behavior is limited. In this paper a methodology to design a gamifyied environment is presented, taking into consideration the possibility to integrate different parameters to promote user’s participation and to foster her perseverance in the engagement with the proposed serious game. A specific Sustainability Index is proposed, together with its calculation algorithm, in order to better communicate and compare the environmental performances of individuals, and ultimately to interact among each other through collaboration and competition in the framework of the proposed game itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United Nations: How to make cities more resilient: a handbook for local government leaders. (2017)

    Google Scholar 

  2. Schiera, D.S., Minuto, F.D., Bottaccioli, L., Borchiellini, R., Lanzini, A.: Analysis of rooftop photovoltaics diffusion in energy community buildings by a novel gis- and agent-based modeling co-simulation platform. IEEE Access 7, 93404–93432 (2019)

    Google Scholar 

  3. United Nations: Transforming our world: the 2030 Agenda for Sustainable Development (2015)

    Google Scholar 

  4. Girard, L.F., Nocca, F., Gravagnuolo, A.: Matera: city of nature, city of culture, city of regeneration. Towards a landscape-based and culture-based urban circular economy. Aestimum 74, 5–42 (2019)

    Google Scholar 

  5. European Commission: The European Green Deal. Eur. Comm. 53(9), 24. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52019DC0640. Accessed 15 May 2023

  6. European Commission: Circular Economy Action Plan for a cleaner and more competitive Europe. 28. https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1583933814386&uri=COM:2020:98:FIN. Accessed 12 May 2023

  7. Bonoli, A., Zanni, S., Serrano-Bernardo, F.: Sustainability in building and construction within the framework of circular cities and European new green deal. The contribution of concrete recycling. Sustainability 13(4), 1–16 (2021)

    Google Scholar 

  8. Napoli, G., Barbaro, S., Giuffrida, S., Trovato, M.R.: The European green deal: new challenges for the economic feasibility of energy retrofit at district scale. In: Bevilacqua, C., Calabrò, F., Della Spina, L. (eds.) NMP 2020. SIST, vol. 178, pp. 1248–1258. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-48279-4_116

    Chapter  MATH  Google Scholar 

  9. Cerreta, M., Muccio, E., Poli, G., Regalbuto, S., Romano, F.: A multidimensional evaluation for regenerative strategies: towards a circular city-port model implementation. In: Bevilacqua, C., Calabrò, F., Della Spina, L. (eds.) NMP 2020. SIST, vol. 178, pp. 1067–1077. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-48279-4_100

    Chapter  Google Scholar 

  10. Bosone, M., Ciampa, F.: Human-centred indicators (HCI) to regenerate vulnerable cultural heritage and landscape towards a circular city: from the Bronx (NY) to Ercolano (IT). Sustainability 13(10), 5505 (2021)

    MATH  Google Scholar 

  11. Bosone, M., De Toro, P., Girard, L.F., Gravagnuolo, A., Iodice, S.: Indicators for ex-post evaluation of cultural heritage adaptivreuse impacts in the perspective of the circular economy. Sustainability 13(9), 4759 (2021)

    Google Scholar 

  12. Buso, T., Fabi, V., Andersen, R.K., Corgnati, S.P.: Occupant behaviour and robustness of building design. Build. Environ. 94(2), 694–703 (2015)

    Google Scholar 

  13. Barthelmes, V.M., Becchio, C., Corgnati, S.P.: Occupant behavior lifestyles in a residential nearly zero energy building: Effect on energy use and thermal comfort. Sci. Technol. Built Environ. 22(7), 960–975 (2016)

    Google Scholar 

  14. Fabi, V., Andersen, R.V., Corgnati, S.P., Olesen, B.W.: Occupants’ window opening behaviour: a literature review of factors influencing occupant behaviour and models. Build. Environ. 58, 188–198 (2012)

    Google Scholar 

  15. Yan, D., et al.: Occupant behavior modeling for building performance simulation: current state and future challenges. Build. Environ. 107, 264–278 (2015)

    MATH  Google Scholar 

  16. Topf, S., Speekenbrink, M.: Follow my example, for better and for worse: the influence of behavioral traces on recycling decisions. J. Exp. Psychol.: Appl. (2023)

    Google Scholar 

  17. Bruchmann, K., Chue, S.M., Dillon, K., Lucas, J.K., Neumann, K., Parque, C.: Social comparison information influences intentions to reduce single-use plastic water bottle consumption. Front. Psychol. 12, 612662 (2021)

    Google Scholar 

  18. Schultz, W., Javey, S., Sorokina, A.: Social comparison as a tool to promote residential water conservation. Front. Water 1, 2 (2019)

    Google Scholar 

  19. Baul, T.K., Khan, M.A., Sarker, A., Atri, A.C., Jashimuddin, M., Alam, A.: Perceptions and attitudes of tertiary level students towards wood and non-wood furniture and energy fuels in Bangladesh. Trees, Forests and People 10, 100351 (2022)

    Google Scholar 

  20. Zapico, J.L., Katzeff, C., Bohné, U., Milestad, R.: Eco-feedback Visualization for Closing the Gap of Organic Food Consumption. In: Proceedings of the 9th Nordic Conference on Human-Computer Interaction, pp. 1–9. ACM, Gothenburg Sweden (2016)

    Google Scholar 

  21. Gifford, R.: The dragons of inaction: psychological barriers that limit climate change mitigation and adaptation. Am. Psychol. 66(4), 290–302 (2011)

    MATH  Google Scholar 

  22. Clayton, S.: Social issues and personal life: considering the environment. J. Soc. Issues 73(3), 667–681 (2017)

    MATH  Google Scholar 

  23. Estrada, M., Schultz, P.W., Silva-Send, N., Boudrias, M.A.: The role of social influence on pro-environment behaviors in the San Diego region. J. Urban Health 94, 170–179 (2017)

    Google Scholar 

  24. Stapleton, S.R.: Environmental identity development through social interactions, action, and recognition. J. Environ. Educ. 46(2), 94–113 (2015)

    MATH  Google Scholar 

  25. Kok, A.L., Barendregt, W.: Understanding the adoption, use, and effects of ecological footprint calculators among Dutch citizens. J. Clean. Prod. 326, 129341 (2021)

    Google Scholar 

  26. Ajzen, I.: The theory of planned behaviour. Organ. Behav. Hum. Decis. Process. 50(2), 179–211 (1991)

    MATH  Google Scholar 

  27. Bamberg, S.: Applying the stage model of self-regulated behavioral change in a car use reduction intervention. J. Environ. Psychol. 33, 68–75 (2013)

    MATH  Google Scholar 

  28. Fischer, C.: Feedback on household electricity consumption: a tool for saving energy? Energ. Effi. 1, 79–104 (2008)

    MATH  Google Scholar 

  29. Grønhøj, A., Thøgersen, J.: Feedback on household electricity consumption: learning and social influence processes. Int. J. Consum. Stud. 35(2), 138–145 (2011)

    MATH  Google Scholar 

  30. Darby, S.: Making it obvious: designing feedback into energy consumption. In: Bertoldi, P., Ricci, A., de Almeida, A. (eds.) Energy Efficiency in Household Appliances and Lighting. Springer, Berlin (2001). https://doi.org/10.1007/978-3-642-56531-1_73

    Chapter  MATH  Google Scholar 

  31. Abrahamse, W., Steg, L., Vlek, C., Rothengatter, T.: A review of intervention studies aimed at household energy conservation. J. Environ. Psychol. 25(3), 273–291 (2005)

    Google Scholar 

  32. Faruqui, A., Sergici, S., Sharif, A.: The impact of informational feedback on energy consumption—a survey of the experimental evidence. Energy 35, 1598–1608 (2010)

    MATH  Google Scholar 

  33. Suls, J., Martin, R., Wheeler, L.: Social comparison: why, with whom, and with what effect? Curr. Dir. Psychol. Sci. 11(5), 159–163 (2002)

    Google Scholar 

  34. Sala, S., Ciuffo, B., Nijkamp, P.: A systemic framework for sustainability assessment. Ecol. Econ. 119, 314–325 (2015)

    MATH  Google Scholar 

  35. Suppa, A.R., Cavana, G., Binda, T.: Supporting the EU mission “100 climate-neutral cities by 2030”: a review of tools to support decision-making for the built environment at district or city scale. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds.) Computational Science and Its Applications – ICCSA 2022 Workshops, ICCSA 2022, vol. 13380, pp. 151–168. Springer, Cham. (2022)

    MATH  Google Scholar 

  36. Bottero, M., Dell’Anna, F.: The role of quality management services (QMSS) in aligning the construction sector to the european taxonomy: the experience of the QUEST project. In: Calabrò, F., Della Spina, L., Piñeira Mantiñán, M.J. (eds.) New Metropolitan Perspectives, NMP 2022, vol. 482, pp. 1732–1741. Springer, Cham (2022)

    Google Scholar 

  37. Deng, W., Prasad, P.: Quantifying sustainability for the built environmental at urban scale: a study of three sustainable urban assessment systems. In: Conference on Sustainable Building South East Asia, 4–6th, 2010, Malaysia (2010)

    Google Scholar 

  38. Retzlaff, R.C.: Green building assessment systems: a framework and comparison for planners. J. Am. Plann. Assoc. 74(4), 505–519 (2008)

    MATH  Google Scholar 

  39. Nguyen, B.K., Altan, H.: Comparative review of five sustainable rating systems. Procedia Eng. 21, 376–386 (2011)

    MATH  Google Scholar 

  40. Mattoni, B., Guattari, C., Evangelisti, L., Bisegna, F., Gori, P., Asdrubali, F.: Critical review and methodological approach to evaluate the differences among international green building rating tools. Renew. Sustain. Energy Rev. 82, 950–960 (2018)

    Google Scholar 

  41. Berardi, U.: Beyond sustainability assessment systems: upgrading topics by enlarging the scale of assessment. Int. J. Sustain. Build. Technol. Urban Dev. 2(4), 276–282 (2011)

    MATH  Google Scholar 

  42. Haapio, A.: Towards sustainable urban communities. Environ. Impact Assess. Rev. 32(1), 165–169 (2012)

    Google Scholar 

  43. Crit.com: Criterion Planners e a Global Survey of Urban Sustainability Rating Tools. http://crit.com/wp-content/uploads/2014/11/criterion_planners_sustainability_ratings_tool.pdf

  44. GRESB: Real Estate Refernce Guide. https://documents.gresb.com/generated_files/real_estate/2021/real_estate/reference_guide/complete.html. Accessed 12 May 2023

  45. EPRA: European Public Real Estate Association (EPRA): EPRA Sustainability Best Practices Recommendations Guidelines. (2017)

    Google Scholar 

  46. Biørn-Hansen, A., Katzeff, C., Eriksson, E.: Exploring the use of a carbon footprint calculator challenging everyday habits. In: Nordic Human-Computer Interaction Conference (NordiCHI 2022), Article 18, pp. 1–10. Association for Computing Machinery, New York (2022)

    Google Scholar 

  47. Kok, G., et al.: A taxonomy of behaviour change methods: an intervention mapping approach. Health Psychol. Rev. 10(3), 297–312 (2016)

    MathSciNet  MATH  Google Scholar 

  48. Gurusinga, N.: The effectiveness of using carbon footprint calculator to increase students’ awareness and motivation to adopt a low-carbon lifestyle. PhD dissertation, University of Melbourne (2016)

    Google Scholar 

  49. Gram-Hanssen, K., Christensen, T.H.: Carbon calculators as a tool for a low-carbon everyday life? Sustainability 8(2), 19–30 (2012)

    MATH  Google Scholar 

  50. Sutcliffe, M., Hooper, P., Howell, R.: Can eco-footprinting analysis be used successfully to encourage more sustainable behaviour at the household level? Sustain. Dev. 16(1), 1–16 (2008)

    MATH  Google Scholar 

  51. Salo, M., Mattinen-Yuryev, M., Nissinen, A.: Opportunities and limitations of carbon footprint calculators to steer sustainable household consumption – Analysis of Nordic calculator features. J. Clean. Prod. 207, 658–666 (2019)

    Google Scholar 

  52. Collins, A., Galli, A., Hipwood, T., Murthy, A.: Living within a one planet reality: the contribution of personal footprint calculators. Environ. Res. Lett. 15(2), 025008 (2020)

    MATH  Google Scholar 

  53. Abrahamse, W., Steg, L., Vlek, C., Rothengatter, T.: The effect of tailored information, goal setting, and tailored feedback on household energy use, energy related behaviors, and behavioral antecedents. J. Environ. Psychol. 27(4), 265–276 (2007)

    Google Scholar 

  54. Darby, S.: The effectiveness of feedback on energy consumption. Rev. DEFRA Lit. Meter. Bill. Direct Displays 486, 26 (2006)

    MATH  Google Scholar 

  55. Bottrill, C.: Internet-Based Carbon Tools for Behaviour Change. University of Oxford, Environmental Change Institute (2007)

    Google Scholar 

  56. Marache-Francisco, C., Brangier, E.: The gamification experience: UXD with a gamification background. In: Blashki, K., Isaias, P. (eds.) Emerging Research and Trends in Interactivity and the Human-Computer Interface, pp. 205–223. IGI Global, Hershey (2014)

    Google Scholar 

  57. Deterding, S.: Gamification: designing for motivation. Interactions 19(4), 14–17 (2012)

    MATH  Google Scholar 

  58. Ritterfeld, U., Cody, M., Vorderer, P.: Serious Games: Mechanisms and Effects, 1st edn. Routledge, New York (2009)

    MATH  Google Scholar 

  59. Cravero, S., Strada, F., Lami, I.M., Bottino, A.: Learning sustainability by making games. The experience of a challenge as a novel approach for Education for Sustainable Development. In: 7th International Conference on Higher Education Advances (HEAd 2021), pp. 651–659). Editorial Universitat Politècnica de València (2021)

    Google Scholar 

  60. Ro, M., Brauer, M., Kuntz, K., Shukla, R., Bensch, I.: Making cool choices for sustainability: testing the effectiveness of a game-based approach to promoting pro-environmental behaviors. J. Environ. Psychol. 53, 20–30 (2017)

    Google Scholar 

  61. Judah, G., Gardner, B., Aunger, R.: Forming a flossing habit: An exploratory study of the psychological determinants of habit formation. Br. J. Health. Psychol. 18(2), 338–353 (2013)

    Google Scholar 

  62. Cudok, A., Lawrenz, S., Rausch, A., Vietor, T.: Circular economy driven communities – sustainable behavior driven by mobile applications. Procedia CIRP 105, 362–367 (2022)

    Google Scholar 

  63. Hamari, J., Koivisto, J.: “Working out for likes”: An empirical study on social influence in exercise gamification. Comput. Hum. Behav. 50, 333–347 (2015)

    MATH  Google Scholar 

  64. Duarte, I.C., Afonso, S., Jorge, H., Cayolla, R., Ferreira, C., Castelo-Branco, M.: Tribal love: the neural correlates of passionate engagement in football fans. Soc. Cogn. Affect. Neurosci. 12(5), 718–728 (2017)

    Google Scholar 

  65. McKenzie-Mohr, D.: Fostering Sustainable Behavior: An Introduction to Community-Based Social Marketing, 3rd edn. New Society Publishers, Gabriola (2011)

    MATH  Google Scholar 

  66. https://www.muv2020.eu/. Accessed 12 May 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Cavana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bottero, M., Cavana, G., Viazzo, S. (2023). A Methodological Framework to Assess Individual Sustainable Behavior. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14104. Springer, Cham. https://doi.org/10.1007/978-3-031-37105-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37105-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37104-2

  • Online ISBN: 978-3-031-37105-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics