Classification of Text Writing Proficiency of L2 Learners | SpringerLink
Skip to main content

Classification of Text Writing Proficiency of L2 Learners

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Abstract

In this study, we present a novel system for the automatic classification of text complexity in the Italian language, focusing on the phraseological dimension. This quantitative assessment of text complexity is crucial for various applications, including text readability measurement, text simplification, and support for educators during evaluation processes. We use a dataset comprising texts written by Italian L2 learners and classified according to the levels of the Common European Framework of Reference for Languages. The dataset texts serve as a basis for calculating phraseological features, which are then used as input for multiple machine-learning classifiers to compare their performance in predicting proficiency levels. Our experimental results demonstrate that the proposed framework effectively harnesses phraseological complexity features to achieve high classification accuracy in determining proficiency levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carpi, A., D’Alessandro, F.: On the hybrid Černý-road coloring problem and Hamiltonian paths. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 124–135. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14455-4_13

    Chapter  Google Scholar 

  2. Church, K.W., Hanks, P.: Word association norms, mutual information, and lexicography. Comput. Linguist. 16(1), 22–29 (1990)

    Google Scholar 

  3. D’Alessandro, F., Carpi, A.: On incomplete and synchronizing finite sets. Theoret. Comput. Sci. 664, 67–77 (2017). https://doi.org/10.1016/j.tcs.2015.08.042

    Article  MathSciNet  MATH  Google Scholar 

  4. Dell’Orletta, F., Montemagni, S., Venturi, G.: READ-IT: assessing readability of Italian texts with a view to text simplification. In: Proceedings of the Second Workshop on Speech and Language Processing for Assistive Technologies, pp. 73–83. Association for Computational Linguistics, Edinburgh, Scotland, UK (2011)

    Google Scholar 

  5. Carpi, A., D’Alessandro, F.: On the commutative equivalence of context-free languages. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp. 169–181. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98654-8_14

    Chapter  Google Scholar 

  6. Council of Europe. Council for Cultural Co-operation. Education Committee. Modern Languages Division: Common European Framework of Reference for Languages: Learning, Teaching, Assessment. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  7. Forti, L., Grego Bolli, G., Santarelli, F., Santucci, V., Spina, S.: MALT-IT2: a new resource to measure text difficulty in light of CEFR levels for Italian L2 learning. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 7204–7211. European Language Resources Association, Marseille, France (2020)

    Google Scholar 

  8. Franzoni, V., Milani, A., Biondi, G.: SEMO: a semantic model for emotion recognition in web objects. In: Proceedings of the International Conference on Web Intelligence, pp. 953–958. WI 2017, Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3106426.3109417

  9. Franzoni, V., Poggioni, V., Zollo, F.: Automated classification of book blurbs according to the emotional tags of the social network zazie. ESSEM@ AI* IA 1096, 83–94 (2013). CEUR-WS

    Google Scholar 

  10. Li, Y., Yang, T.: Word embedding for understanding natural language: a survey. In: Srinivasan, S. (ed.) Guide to Big Data Applications. SBD, vol. 26, pp. 83–104. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-53817-4_4

    Chapter  Google Scholar 

  11. Lyding, V., et al.: The PAISÀ corpus of Italian web texts. In: Proceedings of the 9th Web as Corpus Workshop (WaC-9), pp. 36–43. Association for Computational Linguistics, Gothenburg, Sweden (2014). https://doi.org/10.3115/v1/W14-0406

  12. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of the 26th International Conference on Neural Information Processing Systems, vol. 2, pp. 3111–3119. NIPS 2013, Curran Associates Inc., Red Hook, NY, USA (2013)

    Google Scholar 

  13. Milani, A., Franzoni, V., Biondi, G.: Parsing tools for Italian phraseological units. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12955, pp. 427–435. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87007-2_30

    Chapter  Google Scholar 

  14. Natova, I.: Estimating CEFR reading comprehension text complexity. Lang. Learn. J. 49(6), 699–710 (2021). https://doi.org/10.1080/09571736.2019.1665088

    Article  Google Scholar 

  15. Nivre, J., et al.: Universal dependencies v2: an evergrowing multilingual treebank collection. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4034–4043. European Language Resources Association, Marseille, France (2020)

    Google Scholar 

  16. Paquot, M.: The phraseological dimension in interlanguage complexity research. Second. Lang. Res. 35(1), 121–145 (2019). https://doi.org/10.1177/0267658317694221

    Article  Google Scholar 

  17. Poggioni, V., Bartoccini, U., Carpi, A., Santucci, V.: Memes evolution in a memetic variant of particle swarm optimization. Mathematics 7(5), 423 (2019). https://doi.org/10.3390/math7050423

  18. Rychlý, P.: A lexicographer-friendly association score. In: RASLAN (2008)

    Google Scholar 

  19. Santucci, V., Santarelli, F., Forti, L., Spina, S.: Automatic classification of text complexity. Appl. Sci. 10(20), 7285 (2020). https://doi.org/10.3390/app10207285

  20. Straka, M.: UDPipe 2.0 prototype at CoNLL 2018 UD shared task. In: Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pp. 197–207. Association for Computational Linguistics, Brussels, Belgium (2018). https://doi.org/10.18653/v1/K18-2020

  21. Takayama, J., Arase, Y.: Relevant and informative response generation using pointwise mutual information. In: Proceedings of the First Workshop on NLP for Conversational AI, pp. 133–138. Association for Computational Linguistics, Florence, Italy (2019). https://doi.org/10.18653/v1/W19-4115

  22. Vishal, K., Deepak, G., Santhanavijayan, A.: An approach for retrieval of text documents by hybridizing structural topic modeling and pointwise mutual information. In: Mekhilef, S., Favorskaya, M., Pandey, R.K., Shaw, R.N. (eds.) Innovations in Electrical and Electronic Engineering. LNEE, vol. 756, pp. 969–977. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-0749-3_74

    Chapter  Google Scholar 

Download references

Acknowledgment

This work is partially supported by the Italian Ministry of Research under PRIN Project “PHRAME” Grant n.20178XXKFY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Franzoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Biondi, G., Franzoni, V., Milani, A., Santucci, V. (2023). Classification of Text Writing Proficiency of L2 Learners. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14104. Springer, Cham. https://doi.org/10.1007/978-3-031-37105-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37105-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37104-2

  • Online ISBN: 978-3-031-37105-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics