A Kernel Extension of the Ensemble Transform Kalman Filter | SpringerLink
Skip to main content

A Kernel Extension of the Ensemble Transform Kalman Filter

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

Data assimilation methods are mainly based on the Bayesian formulation of the estimation problem. For cost and feasibility reasons, this formulation is usually approximated by Gaussian assumptions on the distribution of model variables, observations and errors. However, when these assumptions are not valid, this can lead to non-convergence or instability of data assimilation methods. The work presented here introduces the use of kernel methods in data assimilation to model uncertainties in the data in a more flexible way than with Gaussian assumptions. The use of kernel functions allows to describe non-linear relationships between variables. The aim is to extend the assimilation methods to problems where they are currently unefficient. The Ensemble Transform Kalman Filter (ETKF) formulation of the assimilation problem is reformulated using kernels and show the equivalence of the two formulations for the linear kernel. Numerical results on the toy model Lorenz 63 are provided for the linear and hyperbolic tangent kernels and compared to the results obtained by the ETKF showing the potential for improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9723
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12154
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buehner, M., McTaggart-Cowan, R., Heilliette, S.: An ensemble Kalman filter for numerical weather prediction based on variational data assimilation: VarEnKF. Mon. Weather Rev. 145(2), 617–635 (2017). https://doi.org/10.1175/MWR-D-16-0106.1

    Article  Google Scholar 

  2. Carrassi, A., Bocquet, M., Bertino, L., Evensen, G.: Data assimilation in the geosciences: an overview of methods, issues, and perspectives. Wiley Interdiscip. Rev. Clim. Change 9(5), e535 (2018). https://doi.org/10.1002/wcc.535

    Article  Google Scholar 

  3. Tsuyuki, T., Miyoshi, T.: Recent progress of data assimilation methods in meteorology. J. Meteorol. Soc. Japan 85, 331–361 (2007). https://doi.org/10.2151/jmsj.85B.331

    Article  Google Scholar 

  4. Sakov, P., Counillon, F., Bertino, L., Lisæter, K.A., Oke, P.R., Korablev, A.: TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic. Ocean Sci. 8, 633–656 (2012). https://doi.org/10.5194/os-8-633-2012

    Article  Google Scholar 

  5. Barth, A., et al.: Assimilation of sea surface temperature, ice concentration and ice drift in a model of the Southern Ocean. Ocean Model. 93, 22–39 (2015)

    Article  Google Scholar 

  6. Lei, J., Bickel, P., Snyder, C.: Comparison of ensemble Kalman filters under non-Gaussianity. Mon. Weather Rev. 138(4), 1293–1306 (2010). https://doi.org/10.1175/2009MWR3133.1

    Article  Google Scholar 

  7. Bertino, L., Evensen, G., Wackernagel, H.: Sequential data assimilation techniques in oceanography. Int. Stat. Rev. 71(2), 223–241 (2003). https://doi.org/10.1111/j.1751-5823.2003.tb00194.x

    Article  MATH  Google Scholar 

  8. Simon, E., Bertino, L.: Application of the Gaussian anamorphosis to assimilation in a 3-D coupled physical-ecosystem model of the North Atlantic with the EnKF: a twin experiment. Ocean Sci. 5(4), 495–510 (2009). https://doi.org/10.5194/os-5-495-2009

    Article  Google Scholar 

  9. Grooms, I.: A comparison of nonlinear extensions to the ensemble Kalman filter. Comput. Geosci. 26(3), 633–650 (2022). https://doi.org/10.1007/s10596-022-10141-x

    Article  MathSciNet  MATH  Google Scholar 

  10. Luo, X.: Ensemble-based kernel learning for a class of data assimilation problems with imperfect forward simulators. PLoS ONE 14(7), 1–40 (2019). https://doi.org/10.1371/journal.pone.0219247

    Article  Google Scholar 

  11. Broomhead, D.S., Lowe, D.: Radial basis functions, multivariable functional interpolation and adaptive networks. In: Royal Signals and Radar Establishment Malvern, UK (1988)

    Google Scholar 

  12. Gottwald, G.A., Reich, S.: Supervised learning from noisy observations: combining machine-learning techniques with data assimilation. Phys. D Nonlinear Phenom. 423, 132911 (2021). https://doi.org/10.1016/j.physd.2021.132911

    Article  MathSciNet  MATH  Google Scholar 

  13. Hug, B., Mémin, E., Tissot, G.: Ensemble forecasts in reproducing kernel Hilbert space family: dynamical systems in Wonderland. arXiv preprint arXiv:2207.14653 (2022)

  14. Hunt, B.R., Kostelich, E.J., Szunyogh, I.: Efficient data assimilation for spatio-temporal chaos: a local ensemble transform Kalman filter. Phys. D Nonlinear Phenom. 230(1), 112–126 (2007). https://doi.org/10.1016/j.physd.2006.11.008

    Article  MATH  Google Scholar 

  15. Didier Auroux Homepage. https://math.unice.fr/~auroux/Work/These/html/node40.html. Accessed 29 Jan 2023

  16. Farchi, A., Bocquet, M.: On the efficiency of covariance localisation of the ensemble Kalman filter using augmented ensembles. Front. Appl. Math. Stat. 5, 3 (2019). https://doi.org/10.3389/fams.2019.00003

    Article  Google Scholar 

  17. Evensen, G.: Data Assimilation: The Ensemble Kalman Filter, 2nd edn., pp. 273–274. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03711-5

    Book  MATH  Google Scholar 

  18. Raanes, P.N., Chen, Y., Grudzien, C., Tondeur, M., Dubois, R.: v. 1.2.1. https://doi.org/10.5281/zenodo.2029296

  19. Fillion, A., Bocquet, M., Gratton, S.: Quasi-static ensemble variational data assimilation: a theoretical and numerical study with the iterative ensemble Kalman smoother. Nonlinear Process. Geophys. 25(2), 315–334 (2018). https://doi.org/10.5194/npg-25-315-2018

    Article  Google Scholar 

  20. Fang, P., Harandi, M., Petersson, L.: Kernel methods in hyperbolic spaces. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10665–10674 (2021). https://doi.org/10.1109/ICCV48922.2021.01049

  21. Sakov, P., Oke, P.R.: A deterministic formulation of the ensemble Kalman filter: an alternative to ensemble square root filters. Tellus A Dyn. Meteorol. Oceanogr. 60(2), 361–371 (2008). https://doi.org/10.1111/j.1600-0870.2007.00299.x

    Article  Google Scholar 

  22. Sakov, P., Oke, P.R.: Implications of the form of the ensemble transformation in the ensemble square root filters. Mon. Weather Rev. 136, 1042–1053 (2008). https://doi.org/10.1175/2007MWR2021.1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Mauran .

Editor information

Editors and Affiliations

A Construction of \(P^a\) When K is Invertible

A Construction of \(P^a\) When K is Invertible

We consider the expression of \(\mathbf {P^a}\) given by (17):

$$\begin{aligned} \mathbf {P^a} = \mathbf { K P^{\alpha } K} \end{aligned}$$

and substitute for \(\mathbf {P^{\alpha }}\) its approximation by the hessian (18):

$$\begin{aligned} \mathbf {P^a} = \textbf{K}[(N-1) \mathbf {K + K \Pi _H \Pi _H K}]^{-1}\textbf{K} \end{aligned}$$
(26)

Since \(\textbf{K}\) is invertible,

$$\begin{aligned} \Leftrightarrow \mathbf {P^a} = \frac{1}{N-1} (\textbf{K}^{-1} + \frac{1}{N-1} \mathbf {\Pi _H \Pi _H})^{-1} \end{aligned}$$
(27)

We the apply Woodbury identity:

$$\begin{aligned} \Leftrightarrow \mathbf {P^a} = \frac{1}{N-1} (\mathbf {K - K \Pi _H} ((N-1) \mathbf {I_{n+p} + \Pi _H K \Pi _H})^{-1} \mathbf {\Pi _H K}) \end{aligned}$$
(28)
$$\begin{aligned} \Leftrightarrow \mathbf {P^a} = \frac{1}{N-1} (\textbf{K} - \begin{bmatrix} \mathbf {0_n} &{} \mathbf {K_{HX}} \\ \mathbf {0_{pn}} &{} \mathbf {K_H} \end{bmatrix} \begin{bmatrix} (N-1) \mathbf {I_n} &{} \mathbf {0_{np}} \\ \mathbf {0_{pn}} &{} (N-1) \mathbf {I_p + K_H} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf {0_n} &{} \mathbf {0_{np}} \\ \mathbf {K_HX}^{\top } &{} \mathbf {K_H} \end{bmatrix}) \end{aligned}$$
(29)

Let \(\mathbf {K_H}\) decompose as \(\mathbf {K_H = U_H \Sigma _H U_H}^{\top }\) with \(\mathbf {\Sigma _H} = diag([\lambda _i]_{1 \le i \le p})\) and \( [\lambda _i]_{1 \le i \le p}\) the eigenvalues of \(\mathbf {K_H}\). We finally obtain:

$$\begin{aligned} \mathbf {P^a} = \frac{1}{N-1} \begin{bmatrix} \mathbf {K_X - K_{HX} U_H} diag(\frac{1}{(N-1)+ \lambda _i}) \mathbf {U_H}^{\top } \mathbf {K_{HX}}^{\top } &{} \mathbf {K_{HX} - K_{HX} U_H} diag(\frac{\lambda _i}{(N-1)+ \lambda _i}) \mathbf {U_H}^{\top } \\ \mathbf {K_{HX}}^{\top } - \mathbf {U_H} diag(\frac{\lambda _i}{(N-1)+ \lambda _i}) \mathbf {U_H}^{\top } \mathbf {K_{HX}}^{\top } &{} \mathbf {U_H} diag(\frac{\lambda _i (N-1)}{(N-1)+ \lambda _i}) \mathbf {U_H}^{\top } \end{bmatrix} \end{aligned}$$
(30)

This gives an explicit expression for \(\mathbf {P^a}\) which does not require numerical inversion.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mauran, S., Mouysset, S., Simon, E., Bertino, L. (2023). A Kernel Extension of the Ensemble Transform Kalman Filter. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 10476. Springer, Cham. https://doi.org/10.1007/978-3-031-36027-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36027-5_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36026-8

  • Online ISBN: 978-3-031-36027-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics