Cross-Stage Fusion Network Based Multi-modal Hyperspectral Image Classification | SpringerLink
Skip to main content

Cross-Stage Fusion Network Based Multi-modal Hyperspectral Image Classification

  • Conference paper
  • First Online:
6GN for Future Wireless Networks (6GN 2022)

Abstract

With the development of satellite technology and airborne platforms, there are more and more methods to acquire remote sensing data. The remote sensing data acquired by multiple methods contain different information and internal structures. Nowadays, single-mode hyperspectral image (HSI) data are no longer satisfactory for researchers’ needs. How to apply and process the information of multimodal data poses a great challenge to researchers. In this paper, we propose a deep learning-based network framework for multimodal remote sensing data classification, where we construct an advanced cross-stage fusion strategy using a fully connected network as the backbone, called CSF. Like the name implies, CSF incorporated two separate stages of fusion strategies for more effective fusion of multimodal data: fusion at the pre-structure and fusion at the tail of the network. This strategy prevents the preservation of excessive redundant information in the pre-fusion and the details of information lost due to late fusion. Moreover, a plug-and-play cross-fusion module for CSF is implemented. On the Houston 2013 dataset, our model strategy outperformed the fusion strategy of each stage and the single-modal strategy, which also demonstrated that multimodal feature fusion has promising performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liang, J., Zhou, J., Tong, L., Bai, X., Wang, B.: Material based salient object detection from hyperspectral images. Pattern Recognit. 76, 476–490 (2018). https://doi.org/10.1016/j.patcog.2017.11.024

    Article  Google Scholar 

  2. Gao, B., et al.: Additional sampling layout optimization method for environmental quality grade classifications of farmland soil. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10, 5350–5358 (2017). https://doi.org/10.1109/JSTARS.2017.2753467

  3. Zadeh, M.H., Tangestani, M.H., Roldan, F.V., Yusta, I.: Mineral exploration and alteration zone mapping using mixture tuned matched filtering approach on ASTER Data at the Central Part of Dehaj-Sarduiyeh Copper Belt, SE Iran. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7, 284–289 (2014). https://doi.org/10.1109/JSTARS.2013.2261800

  4. Lu, B., Dao, P., Liu, J., He, Y., Shang, J.: Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 12, 2659 (2020). https://doi.org/10.3390/rs12162659

    Article  Google Scholar 

  5. Kobryn, H.T., Wouters, K., Beckley, L.E., Heege, T.: Ningaloo reef: shallow marine habitats mapped using a hyperspectral sensor. PLoS ONE 8, e70105 (2013). https://doi.org/10.1371/journal.pone.0070105

    Article  Google Scholar 

  6. Tang, C., Liu, X., Zhu, E., Wang, L., Zomaya, A.: Hyperspectral band selection via spatial-spectral weighted region-wise multiple graph fusion-based spectral clustering. In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, pp. 3038–3044. International Joint Conferences on Artificial Intelligence Organization, Montreal, Canada (2021). https://doi.org/10.24963/ijcai.2021/418

  7. Chakraborty, T., Trehan, U.: SpectralNET: Exploring Spatial-Spectral WaveletCNN for Hyperspectral Image Classification. http://arxiv.org/abs/2104.00341 (2021)

  8. Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19, 1657–1663 (2010). https://doi.org/10.1109/TIP.2010.2044957

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, L., Lao, S., Fieguth, P.W., Guo, Y., Wang, X., Pietikäinen, M.: Median robust extended local binary pattern for texture classification. IEEE Trans. Image Process. 25, 1368–1381 (2016). https://doi.org/10.1109/TIP.2016.2522378

    Article  MathSciNet  MATH  Google Scholar 

  10. Camps-Valls, G., Bruzzone, L.: Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 43, 1351–1362 (2005). https://doi.org/10.1109/TGRS.2005.846154

    Article  Google Scholar 

  11. Jia, S., et al.: Flexible gabor-based superpixel-level unsupervised LDA for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 59, 10394–10409 (2021). https://doi.org/10.1109/TGRS.2020.3048994

    Article  Google Scholar 

  12. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141. IEEE, Salt Lake City, UT (2018). https://doi.org/10.1109/CVPR.2018.00745

  13. Zhang, N., Li, J., Li, Y., Du, Y.: Global attention pyramid network for semantic segmentation. In: 2019 Chinese Control Conference (CCC), pp. 8728–8732 (2019). https://doi.org/10.23919/ChiCC.2019.8865946

  14. Zhang, M., Li, W., Du, Q., Gao, L., Zhang, B.: Feature extraction for classification of hyperspectral and LiDAR data using patch-to-patch CNN. IEEE Trans. Cybern. 50, 100–111 (2020). https://doi.org/10.1109/TCYB.2018.2864670

    Article  Google Scholar 

  15. You, X., Xu, J., Yuan, W., Jing, X.-Y., Tao, D., Zhang, T.: Multi-view common component discriminant analysis for cross-view classification. Pattern Recognit. 92, 37–51 (2019). https://doi.org/10.1016/j.patcog.2019.03.008

    Article  Google Scholar 

  16. Jia, S., et al.: Multiple feature-based superpixel-level decision fusion for hyperspectral and LiDAR data classification. IEEE Trans. Geosci. Remote Sens. 59, 1437–1452 (2021). https://doi.org/10.1109/TGRS.2020.2996599

    Article  Google Scholar 

  17. Wu, X., Hong, D., Chanussot, J.: Convolutional neural networks for multimodal remote sensing data classification. IEEE Trans. Geosci. Remote Sens. 60, 1 (2022). https://doi.org/10.1109/TGRS.2021.3124913

    Article  Google Scholar 

  18. Hong, D., et al.: More diverse means better: multimodal deep learning meets remote-sensing imagery classification. IEEE Trans. Geosci. Remote Sens. 59, 4340–4354 (2021). https://doi.org/10.1109/TGRS.2020.3016820

    Article  Google Scholar 

  19. Hang, R., Li, Z., Ghamisi, P., Hong, D., Xia, G., Liu, Q.: Classification of hyperspectral and LiDAR data using coupled CNNs. IEEE Trans. Geosci. Remote Sens. 58, 4939–4950 (2020). https://doi.org/10.1109/TGRS.2020.2969024

    Article  Google Scholar 

  20. Marcos, D., Volpi, M., Kellenberger, B., Tuia, D.: Land cover mapping at very high resolution with rotation equivariant CNNs: towards small yet accurate models. ISPRS J. Photogramm. Remote Sens. 145, 96–107 (2018). https://doi.org/10.1016/j.isprsjprs.2018.01.021

    Article  Google Scholar 

  21. Marmanis, D., Wegner, J.D., Galliani, S., Schindler, K., Datcu, M., Stilla, U.: Semantic Segmentation of Aerial Images with an Ensemble of CNNS. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 473–480. Copernicus GmbH (2016). https://doi.org/10.5194/isprs-annals-III-3-473-2016

  22. Audebert, N., Le Saux, B., Lefèvre, S.: Beyond RGB: very high resolution urban remote sensing with multimodal deep networks. ISPRS J. Photogramm. Remote Sens. 140, 20–32 (2018). https://doi.org/10.1016/j.isprsjprs.2017.11.011

    Article  Google Scholar 

  23. Hong, D., Hu, J., Yao, J., Chanussot, J., Zhu, X.X.: Multimodal remote sensing benchmark datasets for land cover classification with a shared and specific feature learning model. ISPRS J. Photogramm. Remote Sens. 178, 68–80 (2021). https://doi.org/10.1016/j.isprsjprs.2021.05.011

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grant 62071157, National Key Research and Development Programme 2022YFD2000500 and Natural Science Foundation of Heilongjiang Province under Grant YQ2019F011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuegong Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, Y., Wang, Z., Li, A., Jiang, H. (2023). Cross-Stage Fusion Network Based Multi-modal Hyperspectral Image Classification. In: Li, A., Shi, Y., Xi, L. (eds) 6GN for Future Wireless Networks. 6GN 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 504. Springer, Cham. https://doi.org/10.1007/978-3-031-36011-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36011-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36010-7

  • Online ISBN: 978-3-031-36011-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics