Modeling Users’ Localized Preferences for More Effective News Recommendation | SpringerLink
Skip to main content

Modeling Users’ Localized Preferences for More Effective News Recommendation

  • Conference paper
  • First Online:
Artificial Intelligence in HCI (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14051))

Included in the following conference series:

  • 1732 Accesses

Abstract

During the past two decades, Local newspapers have been experiencing major declines in readership due to the proliferation of national and global online news sources. Local media companies, whose predominant business model is subscription-based, need to increase user engagement to provide added value for local subscribers. Personalization and recommender systems are one way for these news companies to accomplish this goal. However, using standard modeling approaches that focus on users’ global preferences is not appropriate in this context because the local preferences of users exhibit some specific characteristics which do not necessarily match their long-term or broader preferences in the news. Our research explores a localized session-based recommendation approach, using recommendations based on local news articles and articles pertaining to the different local news categories. Experiments performed on a news dataset from a local newspaper show that these local models, particularly related to certain categories of items, do indeed provide more accuracy and effectiveness for personalization which, in turn, may lead to more user engagement with local news content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 18303
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 22879
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.syracuse.com.

References

  1. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proceedings of 20th International Conferenc Very Large Data Bases, VLDB, vol. 1215, pp. 487–499. Citeseer (1994)

    Google Scholar 

  2. Capelle, M., Frasincar, F., Moerland, M., Hogenboom, F.: Semantics-based news recommendation, pp. 1–9 (2012)

    Google Scholar 

  3. Das, A.S., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable online collaborative filtering, pp. 271–280 (2007)

    Google Scholar 

  4. Graff, R.: How the Washington post used data and natural language processing to get people to read more news. Knight Lab (2015)

    Google Scholar 

  5. Jannach, D., Ludewig, M.: When recurrent neural networks meet the neighborhood for session-based recommendation, pp. 306–310 (2017)

    Google Scholar 

  6. Jannach, D., Mobasher, B., Berkovsky, S.: Research directions in session-based and sequential recommendation. User Model. User-Adapt. Interact. 30(4), 609–616 (2020). https://doi.org/10.1007/s11257-020-09274-4

    Article  Google Scholar 

  7. Jawaheer, G., Weller, P., Kostkova, P.: Modeling user preferences in recommender systems: a classification framework for explicit and implicit user feedback. ACM Trans. Interact. Intell. Syst. (TiiS) 4(2), 1–26 (2014)

    Article  Google Scholar 

  8. Kaminskas, M., Ricci, F.: Contextual music information retrieval and recommendation: state of the art and challenges. Comput. Sci. Rev. 6(2–3), 89–119 (2012)

    Article  Google Scholar 

  9. Konstan, J.A., Riedl, J.: Recommender systems: from algorithms to user experience. User Model. User-Adapt. Interact. 22(1), 101–123 (2012)

    Article  Google Scholar 

  10. Liu, Q., Zeng, Y., Mokhosi, R., Zhang, H.: Stamp: short-term attention/memory priority model for session-based recommendation, pp. 1831–1839 (2018)

    Google Scholar 

  11. Ludewig, M., Jannach, D.: Evaluation of session-based recommendation algorithms. User Model. User-Adapt. Interact. 28(4–5), 331–390 (2018)

    Google Scholar 

  12. Mobasher, B., Dai, H., Luo, T., Nakagawa, M.: Effective personalization based on association rule discovery from web usage data, pp. 9–15 (2001)

    Google Scholar 

  13. Norris, J.R., Norris, J.R.: Markov Chains, 2nd edn. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  14. Özgöbek, Ö., Gulla, J.A., Erdur, R.C.: A survey on challenges and methods in news recommendation, pp. 278–285 (2014)

    Google Scholar 

  15. Parra, D., Sahebi, S.: Recommender systems: sources of knowledge and evaluation metrics, pp. 149–175 (2013)

    Google Scholar 

  16. Pourashraf, P., Mobasher, B.: Using recommender systems to help revitalize local news. In: Adjunct Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization, pp. 80–84 (2022)

    Google Scholar 

  17. Qin, J.: Research progress of news recommendation methods. arXiv preprint arXiv:2012.02360 (2020)

  18. Raza, S., Ding, C.: A survey on news recommender system-dealing with timeliness, dynamic user interest and content quality, and effects of recommendation on news readers. arXiv preprint arXiv:2009.04964 (2020)

  19. Raza, S., Ding, C.: News recommender system: a review of recent progress, challenges, and opportunities. Artif. Intell. Rev. 55(1), 749–800 (2021). https://doi.org/10.1007/s10462-021-10043-x

    Article  Google Scholar 

  20. Shoemaker, P.J.: News and newsworthiness: a commentary (2006)

    Google Scholar 

  21. de Souza Pereira Moreira, G.: Chameleon: a deep learning meta-architecture for news recommender systems, pp. 578–583 (2018)

    Google Scholar 

  22. Spangher, A.: Building the next new york times recommendation engine. The New York Times (2015)

    Google Scholar 

  23. Sun, K., Qian, T., Chen, T., Liang, Y., Nguyen, Q.V.H., Yin, H.: Where to go next: modeling long-and short-term user preferences for point-of-interest recommendation, vol. 34, no. 01, pp. 214–221 (2020)

    Google Scholar 

  24. Symeonidis, P., Kirjackaja, L., Zanker, M.: Session-aware news recommendations using random walks on time-evolving heterogeneous information networks. User Model. User-Adapt. Interact. 30(4), 727–755 (2020). https://doi.org/10.1007/s11257-020-09261-9

    Article  Google Scholar 

  25. Villatel, K., Smirnova, E., Mary, J., Preux, P.: Recurrent neural networks for long and short-term sequential recommendation. arXiv preprint arXiv:1807.09142 (2018)

  26. Wang, S., Zou, B., Li, C., Zhao, K., Liu, Q., Chen, H.: Crown: a context-aware recommender for web news, pp. 1420–1423 (2015)

    Google Scholar 

  27. Wu, C., Wu, F., Huang, Y., Xie, X.: Personalized news recommendation: a survey. arXiv preprint arXiv:2106.08934 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payam Pourashraf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pourashraf, P., Mobasher, B. (2023). Modeling Users’ Localized Preferences for More Effective News Recommendation. In: Degen, H., Ntoa, S. (eds) Artificial Intelligence in HCI. HCII 2023. Lecture Notes in Computer Science(), vol 14051. Springer, Cham. https://doi.org/10.1007/978-3-031-35894-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35894-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35893-7

  • Online ISBN: 978-3-031-35894-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics