Towards Automatic Forecasting: Evaluation of Time-Series Forecasting Models for Chickenpox Cases Estimation in Hungary | SpringerLink
Skip to main content

Towards Automatic Forecasting: Evaluation of Time-Series Forecasting Models for Chickenpox Cases Estimation in Hungary

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 715))

  • 392 Accesses

Abstract

Time-Series Forecasting is a powerful data modeling discipline that analyzes historical observations to predict future values of a time-series. It has been utilized in numerous applications, including but not limited to economics, meteorology, and health. In this paper, we use time-series forecasting techniques to model and predict the future incidence of chickenpox. To achieve this, we implement and simulate multiple models and data preprocessing techniques on a Hungary-collected dataset. We demonstrate that the LSTM model outperforms all other models in the vast majority of the experiments in terms of county-level forecasting, whereas the SARIMAX model performs best at the national level. We also demonstrate that the performance of the traditional data preprocessing method is inferior to that of the data preprocessing method that we have proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 26311
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 32889
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alsharef, A., Aggarwal, K., Kumar, M., Mishra, A.: Review of ML and AutoML solutions to forecast time-series data. Arch. Comput. Methods Eng. (2022). https://doi.org/10.1007/s11831-022-09765-0, ISSN 1886-1784

  2. Arvin, A.M.: Varicella-zoster virus. Clin. Microbiol. Rev. 9(3), 361381 (1996)

    Google Scholar 

  3. Bonanni, P., Breuer, J., Gershon, A., Gershon, M., Hryniewicz, W., Papaevangelou, V., Rentier, B., Rümke, H., Sadzot-Delvaux, C., Senterre, J., et al.: Varicella vaccination in europetaking the practical approach. BMC Med. 7(1), 112 (2009)

    Article  Google Scholar 

  4. Breuer, J., Fifer, H.: Chickenpox, April 2011. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3275319/

  5. Bui, C., Pham, N., Vo, A., Tran, A., Nguyen, A., Le, T.: Time series forecasting for healthcare diagnosis and prognostics with the focus on cardiovascular diseases. In: Vo Van, T., Nguyen Le, T., Nguyen Duc, T. (eds.) 6th International Conference on the Development of Biomedical Engineering in Vietnam (BME6). BME 2017. IFMBE Proceedings, vol. 63, pp. 809–818. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-4361-1_138, ISBN 978-981-10-4361-1

  6. Chen, J., Zeng, G.Q., Zhou, W., Du, W., Lu, K.D.: Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization. Ener. Conv. Manag. 165, 681–695 (2018). https://doi.org/10.1016/j.enconman.2018.03.098, https://www.sciencedirect.com/science/article/pii/S0196890418303261, ISSN 0196-8904

  7. Cools, M., Moons, E., Wets, G.: Investigating the variability in daily traffic counts using ARIMAX and SARIMA(X) models: assessing the impact of holidays on two divergent site locations (2008)

    Google Scholar 

  8. Dingli, A., Fournier, K.S.: Financial time series forecasting - a deep learning approach. Int. J. Mach. Learn. Comput. 7, 118–122 (2017)

    Google Scholar 

  9. Feng, Q., Qian, S.: Research on power load forecasting model of economic development zone based on neural network. Ener. Rep. 7, 1447–1452 (2021). https://doi.org/10.1016/j.egyr.2021.09.098, https://www.sciencedirect.com/science/article/pii/S2352484721009045, ISSN 2352-4847. 2021 International Conference on Energy Engineering and Power Systems

  10. De Gooijer, J.G., Hyndman, R.J.: 25 years of IIF time series forecasting: a selective review. Econ. eJ. (2005)

    Google Scholar 

  11. Helmuth, I.G., Poulsen, A., Suppli, C.H., Mølbak, K.: Varicella in Europe-a review of the epidemiology and experience with vaccination. Vaccine 33(21), 2406–2413 (2015)

    Google Scholar 

  12. Hoppe, E., et al.: Deep learning for magnetic resonance fingerprinting: a new approach for predicting quantitative parameter values from time series. Stud. Health Technol. Inform. 243, 202–206 (2017)

    Google Scholar 

  13. Huang, X., Zanni-Merk, C., Crémilleux, B.: Enhancing deep learning with semantics: an application to manufacturing time series analysis. Procedia Comput. Sci. 159, 437–446 (2019). https://doi.org/10.1016/j.procs.2019.09.198, https://www.sciencedirect.com/science/article/pii/S1877050919313808, ISSN 1877-0509. Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 23rd International Conference KES 2019

  14. Lim, B., Arık, S.Ö., Loeff, N., Pfister, T.: Temporal fusion transformers for interpretable multi-horizon time series forecasting. Int. J. Forecast. 37(4), 1748–1764 (2021)

    Google Scholar 

  15. Lindemann, B., Müller, T., Vietz, H., Jazdi, N., Weyrich, M.: A survey on long short-term memory networks for time series prediction. Procedia CIRP 99, 650–655 (2021). https://doi.org/10.1016/j.procir.2021.03.088, https://www.sciencedirect.com/science/article/pii/S2212827121003796, ISSN 2212-8271. 14th CIRP Conference on Intelligent Computation in Manufacturing Engineering, 15–17 July 2020

  16. Liu, H., Tian, H.Q., Liang, X.F., Li, Y.F.: Wind speed forecasting approach using secondary decomposition algorithm and ELMAN neural networks. Appl. Energy 157, 183–194 (2015). https://doi.org/10.1016/j.apenergy.2015.08.014, https://www.sciencedirect.com/science/article/pii/S0306261915009393, ISSN 0306-2619

  17. Muzaffar, S., Afshari, A.: Short-term load forecasts using LSTM networks. Energy Procedia 158, 2922–2927 (2019). https://doi.org/10.1016/j.egypro.2019.01.952, https://www.sciencedirect.com/science/article/pii/S1876610219310008, ISSN 1876-6102. Innovative Solutions for Energy Transitions

  18. Oreshkin, B.N., Carpov, D., Chapados, N., Bengio, Y.: N-BEATS: neural basis expansion analysis for interpretable time series forecasting. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020. OpenReview.net (2020). https://openreview.net/forum?id=r1ecqn4YwB

  19. Box George, E.P., Jenkins, G.M.: Time Series Analysis Forescasting and Control. Holden-Day (1976)

    Google Scholar 

  20. Public health guidance on varicella vaccination in the Eropean union, February 2015. https://www.ecdc.europa.eu/en/publications-data/public-health-guidance-varicella-vaccination-european-union

  21. Qian, K., Wang, X., Yuan, Y.: Research on regional short-term power load forecasting model and case analysis. Processes 9(9) (2021). https://doi.org/10.3390/pr9091617, https://www.mdpi.com/2227-9717/9/9/1617, ISSN 2227-9717

  22. Rashid, K.M., Louis, J.: Times-series data augmentation and deep learning for construction equipment activity recognition. Adv. Eng. Inform. 42, 100944 (2019)

    Google Scholar 

  23. Rozemberczki, B., Scherer, P., Kiss, O., Sarkar, R., Ferenci, T.: Chickenpox cases in Hungary: a benchmark dataset for spatiotemporal signal processing with graph neural networks. arXiv preprint arXiv:2102.08100 (2021)

  24. Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: DeepAR: probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 36(3), 1181–1191 (2020). https://doi.org/10.1016/j.ijforecast.2019.07.001, https://www.sciencedirect.com/science/article/pii/S0169207019301888, ISSN 0169-2070

  25. Sarafrazi, S., et al.: Cracking the “sepsis” code: asessing time series nature of EHR data, and using deep learning for early sepsis prediction. In: 2019 Computing in Cardiology (CinC), pp. 1–4 (2019)

    Google Scholar 

  26. Sezer, O.B., Gudelek, M.U., Ozbayoglu, A.M.: Financial time series forecasting with deep learning: a systematic literature review: 2005–2019. arXiv, abs/1911.13288 (2020)

    Google Scholar 

  27. Shahi, T.B., Shrestha, A., Neupane, A., Guo, W.: Stock price forecasting with deep learning: a comparative study. Mathematics 8(9) (2020). https://doi.org/10.3390/math8091441, https://www.mdpi.com/2227-7390/8/9/1441, ISSN 2227-7390

  28. Wang, Y., Zhang, D., Liu, Y., Dai, B., Lee, L.H.: Enhancing transportation systems via deep learning: a survey. Transp. Res. Part C: Emerg. Technol. 99, 144–163 (2019). https://doi.org/10.1016/j.trc.2018.12.004, https://www.sciencedirect.com/science/article/pii/S0968090X18304108, ISSN 0968-090X

  29. Zhang, X., Shen, F., Zhao, J., Yang, G.: Time series forecasting using GRU neural network with multi-lag after decomposition. In: ICONIP (2017)

    Google Scholar 

  30. Zhang, Y., Pan, G.: A hybrid prediction model for forecasting wind energy resources. Environ. Sci. Poll. Res. 27(16), 19428–19446 (2020). https://doi.org/10.1007/s11356-020-08452-6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wadie Skaf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Skaf, W., Tosayeva, A., Várkonyi, D.T. (2023). Towards Automatic Forecasting: Evaluation of Time-Series Forecasting Models for Chickenpox Cases Estimation in Hungary. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 715. Springer, Cham. https://doi.org/10.1007/978-3-031-35507-3_1

Download citation

Publish with us

Policies and ethics