Abstract
In this paper, a new variant of differential cryptanalysis is developed by applying the idea of the boomerang attack on the truncated differential. We call this variant a triangle differential cryptanalysis since it utilizes the difference of every pair in an input and output triple. Similar to the boomerang attack, the triangle differential cryptanalysis combines two independent truncated differential distinguishers of two parts of a cryptosystem into a distinguisher of the whole cryptosystem. It provides a new perspective on the differential propagation, and so it is possible to break the limit of the traditional truncated differential. An MILP modeling technique is also provided for the triangle differential distinguisher search against general SPN ciphers. To demonstrate the power of this new type of differential distinguishers, we apply it to SKINNY-64 and CRAFT. For SKINNY-64, an 11-round triangle differential distinguisher is obtained, while the previous longest truncated differential distinguisher is 10-round. For CRAFT, a 13-round triangle differential distinguisher is obtained, while the previous longest truncated differential distinguisher is 12-round. Besides, compared with the best distinguishers other than the truncated differential distinguishers, there are still some improvements on the probabilities for both SKINNY-64 and CRAFT.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Logic Friday. https://www.softpedia.com/get/Others/Home-Education/Logic-Friday.shtml
Banik, S., et al.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_17
Bao, Z., Guo, J., Shi, D., Tu, Y.: Superposition meet-in-the-middle attacks: updates on fundamental security of AES-like hashing. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13507, pp. 64–93. (2022). https://doi.org/10.1007/978-3-031-15802-5_3
Bar-On, A., Dunkelman, O., Keller, N., Ronen, E., Shamir, A.: Improved key recovery attacks on reduced-round AES with practical data and memory complexities. J. Cryptol. 33(3), 1003–1043 (2020)
Bardeh, N.G., Rønjom, S.: The exchange attack: how to distinguish six rounds of AES with \(2^{88.2}\) chosen plaintexts. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 347–370. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_12
Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_5
Beierle, C., Leander, G., Moradi, A., Rasoolzadeh, S.: CRAFT: lightweight tweakable block cipher with efficient protection against DFA attacks. IACR Trans. Symmetric Cryptol. 2019(1), 5–45 (2019)
Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31 rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_2
Dunkelman, O., Keller, N., Ronen, E., Shamir, A.: The retracing boomerang attack. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 280–309. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_11
Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: MILP-based automatic search algorithms for differential and linear trails for speck. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 268–288. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_14
Gong, Z., Nikova, S., Law, Y.W.: KLEIN: a new family of lightweight block ciphers. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25286-0_1
Grassi, L.: Mixture differential cryptanalysis: a new approach to distinguishers and attacks on round-reduced AES. IACR Trans. Symmetric Cryptol. 2018(2), 133–160 (2018)
Gu, Z., Rothberg, E., Bixby, R.: Gurobi optimizer. http://www.gurobi.com/
Hadipour, H., Sadeghi, S., Niknam, M.M., Song, L., Bagheri, N.: Comprehensive security analysis of CRAFT. IACR Trans. Symmetric Cryptol. 2019(4), 290–317 (2019)
Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60590-8_16
Lallemand, V., Naya-Plasencia, M.: Cryptanalysis of KLEIN. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 451–470. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_23
Moghaddam, A.E., Ahmadian, Z.: New automatic search method for truncated-differential characteristics application to Midori, SKINNY and CRAFT. Comput. J. 63(12), 1813–1825 (2020). https://doi.org/10.1093/comjnl/bxaa004
Sadeghi, S., Mohammadi, T., Bagheri, N.: Cryptanalysis of reduced round SKINNY block cipher. IACR Trans. Symmetric Cryptol. 2018(3), 124–162 (2018)
Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation and (related-key) differential characteristic search: application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_9
Tiessen, T.: Polytopic cryptanalysis. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 214–239. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_9
Wagner, D.: The boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48519-8_12
Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching integral distinguishers based on division property for 6 lightweight block ciphers. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_24
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xie, X., Tian, T. (2023). The Triangle Differential Cryptanalysis. In: Simpson, L., Rezazadeh Baee, M.A. (eds) Information Security and Privacy. ACISP 2023. Lecture Notes in Computer Science, vol 13915. Springer, Cham. https://doi.org/10.1007/978-3-031-35486-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-35486-1_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35485-4
Online ISBN: 978-3-031-35486-1
eBook Packages: Computer ScienceComputer Science (R0)