Practical Verifiable Random Function with RKA Security | SpringerLink
Skip to main content

Practical Verifiable Random Function with RKA Security

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2023)

Abstract

A verifiable random function (VRF) allows the generation of a random number with publicly verifiable proof, showing that the random number is honestly generated. The practical VRF used in real-world applications considers the security of uniqueness, pseudorandomness, and unpredictability under malicious key generation. In this paper, we propose the security model of related-key attack to VRF for capturing attacks like tampering attacks. We propose a new construction of VRF that satisfies the RKA security together with the existing security requirements. We implement our VRF construction and demonstrate that our scheme is practical for real-world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/rka-vrf/rka-vrf.

References

  1. Abdalla, M., Benhamouda, F., Passelègue, A., Paterson, K.G.: Related-key security for pseudorandom functions beyond the linear barrier. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 77–94. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_5

    Chapter  Google Scholar 

  2. Badertscher, C., Gaži, P., Querejeta-Azurmendi, I., Russell, A.: On uc-secure range extension and batch verification for ecvrf. Cryptology ePrint Archive, Paper 2022/1045 (2022). https://eprint.iacr.org/2022/1045. To appear in ESORICS 2022

  3. Bao, F., Deng, R.H., Zhu, H.F.: Variations of diffie-hellman problem. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39927-8_28

    Chapter  Google Scholar 

  4. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_31

    Chapter  Google Scholar 

  5. Bitansky, N.: Verifiable random functions from non-interactive witness-indistinguishable proofs. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 567–594. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_19

    Chapter  Google Scholar 

  6. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: IEEE SP 2018, pp. 315–334. IEEE Computer Society (2018)

    Google Scholar 

  7. Burdges, J., et al.: Overview of polkadot and its design considerations. Cryptology ePrint Archive, Paper 2020/641 (2020). https://eprint.iacr.org/2020/641

  8. Chow, S.S.M., Hui, L.C.K., Yiu, S.M., Chow, K.P.: An e-Lottery scheme using verifiable random function. In: Gervasi, O., et al. (eds.) ICCSA 2005. LNCS, vol. 3482, pp. 651–660. Springer, Heidelberg (2005). https://doi.org/10.1007/11424857_72

    Chapter  Google Scholar 

  9. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_3

    Chapter  Google Scholar 

  10. Docs, C.: Introduction to chainlink vrf (2020). https://docs.chain.link/docs/chainlink-vrf/#overview

  11. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4_28

    Chapter  Google Scholar 

  12. Esgin, M.F., et al.: Practical post-quantum few-time verifiable random function with applications to algorand. In: Borisov, N., Diaz, C. (eds.) FC 2021. LNCS, vol. 12675, pp. 560–578. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-662-64331-0_29

    Chapter  Google Scholar 

  13. Ganesh, C., Orlandi, C., Tschudi, D.: Proof-of-stake protocols for privacy-aware blockchains. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 690–719. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_23

    Chapter  Google Scholar 

  14. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzantine agreements for cryptocurrencies. In: SOSP 2017, pp. 51–68. ACM (2017)

    Google Scholar 

  15. Goldberg, S., Reyzin, L., Papadopoulos, D., Včelák, J.: Verifiable random functions (VRFs). Internet-Draft draft-irtf-cfrg-vrf-15, Internet Engineering Task Force (2022). https://datatracker.ietf.org/doc/draft-irtf-cfrg-vrf/15/. work in Progress

  16. Goyal, R., Hohenberger, S., Koppula, V., Waters, B.: A generic approach to constructing and proving verifiable random functions. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 537–566. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_18

    Chapter  Google Scholar 

  17. Hanke, T., Movahedi, M., Williams, D.: DFINITY technology overview series, consensus system. CoRR abs/1805.04548 (2018). http://arxiv.org/abs/1805.04548

  18. Hofheinz, D., Jager, T.: Verifiable random functions from standard assumptions. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 336–362. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9_14

    Chapter  Google Scholar 

  19. Hohenberger, S., Waters, B.: Constructing verifiable random functions with large input spaces. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 656–672. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_33

    Chapter  Google Scholar 

  20. Jager, T.: Verifiable random functions from weaker assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 121–143. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_5

    Chapter  Google Scholar 

  21. Kohl, L.: Hunting and gathering – verifiable random functions from standard assumptions with short proofs. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 408–437. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_14

    Chapter  Google Scholar 

  22. Liang, B., Li, H., Chang, J.: Verifiable random functions from (Leveled) multilinear maps. In: Reiter, M., Naccache, D. (eds.) CANS 2015. LNCS, vol. 9476, pp. 129–143. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26823-1_10

    Chapter  Google Scholar 

  23. Micali, S., Reyzin, L.: Soundness in the public-key model. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 542–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_32

    Chapter  MATH  Google Scholar 

  24. Niehues, D.: Verifiable random functions with optimal tightness. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12711, pp. 61–91. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75248-4_3

    Chapter  Google Scholar 

  25. Papadopoulos, D., et al.: Making nsec5 practical for dnssec. Cryptology ePrint Archive, Paper 2017/099 (2017). https://eprint.iacr.org/2017/099

  26. Roşie, R.: Adaptive-secure VRFs with shorter keys from static assumptions. In: Camenisch, J., Papadimitratos, P. (eds.) CANS 2018. LNCS, vol. 11124, pp. 440–459. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00434-7_22

    Chapter  Google Scholar 

  27. Yamada, S.: Asymptotically compact adaptively secure lattice IBEs and verifiable random functions via generalized partitioning techniques. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 161–193. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsz Hon Yuen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuen, T.H., Pan, S., Huang, S., Zhang, X. (2023). Practical Verifiable Random Function with RKA Security. In: Simpson, L., Rezazadeh Baee, M.A. (eds) Information Security and Privacy. ACISP 2023. Lecture Notes in Computer Science, vol 13915. Springer, Cham. https://doi.org/10.1007/978-3-031-35486-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35486-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35485-4

  • Online ISBN: 978-3-031-35486-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics