Finding Small Complete Subgraphs Efficiently | SpringerLink
Skip to main content

Finding Small Complete Subgraphs Efficiently

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13889))

Included in the following conference series:

  • 600 Accesses

Abstract

(I) We revisit the algorithmic problem of finding all triangles in a graph \(G=(V,E)\) with n vertices and m edges. According to a result of Chiba and Nishizeki (1985), this task can be achieved by a combinatorial algorithm running in \(O(m \alpha ) = O(m^{3/2})\) time, where \(\alpha = \alpha (G)\) is the graph arboricity. We provide a new very simple combinatorial algorithm for finding all triangles in a graph and show that is amenable to the same running time analysis. We derive these worst-case bounds from first principles and with very simple proofs that do not rely on classic results due to Nash-Williams from the 1960s.

(II) We extend our arguments to the problem of finding all small complete subgraphs of a given fixed size. We show that the dependency on m and \(\alpha \) in the running time \(O(\alpha ^{\ell -2} \cdot m)\) of the algorithm of Chiba and Nishizeki for listing all copies of \(K_\ell \), where \(\ell \ge 3\), is asymptotically tight.

(III) We give improved arboricity-sensitive running times for counting and/or detection of copies of \(K_\ell \), for small \(\ell \ge 4\). A key ingredient in our algorithms is, once again, the algorithm of Chiba and Nishizeki. Our new algorithms are faster than all previous algorithms in certain high-range arboricity intervals for every \(\ell \ge 7\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplication. In: Proceedings of 2021 ACM-SIAM Symposium on Discrete Algorithms SODA 2021, Virtual Conference, pp. 522–539. SIAM (2021)

    Google Scholar 

  2. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algorithmica 17(3), 209–223 (1997)

    Article  MathSciNet  Google Scholar 

  3. Bar-Yehuda, R., Even, S.: On approximating a vertex cover for planar graphs. In: Proceedings of 14th ACM Symposium on Theory of Computing (STOC), pp. 303–309 (1982)

    Google Scholar 

  4. Björklund, A., Pagh, R., Williams, V.V., Zwick, U.: Listing triangles. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 223–234. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-7_19

    Chapter  Google Scholar 

  5. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–223 (1985)

    Article  MathSciNet  Google Scholar 

  6. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9(3), 251–280 (1990)

    Article  MathSciNet  Google Scholar 

  7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    Google Scholar 

  8. Diestel, R.: Graph Theory. Springer, New York (1997)

    Google Scholar 

  9. Eden, T., Levi, A., Ron, D., Seshadhri, C.: Approximately counting triangles in sublinear time. SIAM J. Comput. 46(5), 1603–1646 (2017)

    Article  MathSciNet  Google Scholar 

  10. Eisenbrand, F., Grandoni, F.: On the complexity of fixed parameter clique and dominating set. Theoret. Comput. Sci. 326(1–3), 57–67 (2004)

    Article  MathSciNet  Google Scholar 

  11. Eppstein, D.: Arboricity and bipartite subgraph listing algorithms. Inf. Process. Lett. 51(4), 207–211 (1994)

    Article  MathSciNet  Google Scholar 

  12. Eppstein, D., Goodrich, M.T., Mitzenmacher, M., Torres, M.R.: 2–3 cuckoo filters for faster triangle listing and set intersection. In: Proceedings of 36th SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS, pp. 247–260 (2017)

    Google Scholar 

  13. Harary, F.: Graph Theory, revised. Addison-Wesley, Reading (1972)

    Google Scholar 

  14. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM J. Comput. 7(4), 413–423 (1978)

    Article  MathSciNet  Google Scholar 

  15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Co., New York (1979)

    Google Scholar 

  16. Kloks, T., Kratsch, D., Müller, H.: Finding and counting small induced subgraphs efficiently. Inf. Process. Lett. 74(3–4), 115–121 (2000)

    Article  MathSciNet  Google Scholar 

  17. Kolountzakis, M., Miller, G., Peng, R., Tsourakakis, C.: Efficient triangle counting in large graphs via degree-based vertex partitioning. Internet Math. 8(1–2), 161–185 (2012)

    Article  MathSciNet  Google Scholar 

  18. Kopelowitz, T., Pettie, S., Porat, E.: Dynamic set intersection. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 470–481. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21840-3_39

    Chapter  Google Scholar 

  19. Kowaluk, M., Lingas, A.: A multi-dimensional matrix product–a natural tool for parameterized graph algorithms. Algorithms 15(12), 448 (2022)

    Article  Google Scholar 

  20. Le Gall, F., Urrutia, F.: Improved rectangular matrix multiplication using powers of the Coppersmith-Winograd tensor. In: Proceedings of 29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, New Orleans, pp. 1029–1046. SIAM (2018)

    Google Scholar 

  21. Lick, D.R., White, A.T.: \(k\)-degenerate graphs. Can. J. Math. 22(5), 1082–1096 (1970)

    Article  MathSciNet  Google Scholar 

  22. Nash-Williams, C.S.J.A.: Edge-disjoint spanning trees of finite graphs. J. London Math. Soc. 36, 445–450 (1961)

    Article  MathSciNet  Google Scholar 

  23. Nash-Williams, C.S.J.A.: Decomposition of finite graphs into forests. J. London Math. Soc. 1(1), 12–12 (1964)

    Article  MathSciNet  Google Scholar 

  24. Nešetřil, J., Poljak, S.: On the complexity of the subgraph problem. Comment. Math. Univ. Carol. 26(2), 415–419 (1985)

    MathSciNet  Google Scholar 

  25. Ortmann, M., Brandes, U.: Triangle listing algorithms: back from the diversion. In: Proceedings of 16th Workshop on Algorithm Engineering and Experiments, ALENEX 2014, Portland, Oregon, pp. 1–8 (2014)

    Google Scholar 

  26. Papadimitriou, C.H., Yannakakis, M.: The clique problem for planar graphs. Inf. Process. Lett. 13(4/5), 131–133 (1981)

    Article  MathSciNet  Google Scholar 

  27. Rivin, I.: Counting cycles and finite dimensional L\({}^{\text{ p }}\) norms. Adv. Appl. Math. 29(4), 647–662 (2002)

    Article  MathSciNet  Google Scholar 

  28. Schank, T.: Algorithmic aspects of triangle-based networks analysis. Ph.D. thesis, Universität Fridericiana zu Karlsruhe (TH) (2007)

    Google Scholar 

  29. Tutte, W.: On the problem of decomposing a graph into \(n\) connected factors. J. Lond. Math. Soc. 36, 221–230 (1961)

    Article  MathSciNet  Google Scholar 

  30. Zechner, N., Lingas, A.: Efficient algorithms for subgraph listing. Algorithms 7(2), 243–252 (2014)

    Article  MathSciNet  Google Scholar 

  31. Zhou, X., Nishizeki, T.: Edge-coloring and \(f\)-coloring for various classes of graphs. J. Graph Algorithms Appl. 3(1), 1–18 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Dumitrescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dumitrescu, A., Lingas, A. (2023). Finding Small Complete Subgraphs Efficiently. In: Hsieh, SY., Hung, LJ., Lee, CW. (eds) Combinatorial Algorithms. IWOCA 2023. Lecture Notes in Computer Science, vol 13889. Springer, Cham. https://doi.org/10.1007/978-3-031-34347-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34347-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34346-9

  • Online ISBN: 978-3-031-34347-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics