Virtual Flow Meter for an Industrial Process | SpringerLink
Skip to main content

Virtual Flow Meter for an Industrial Process

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2023)

Abstract

The digitalization process has emerged strongly in the industry, causing an increase of connected sensors and IIoT devices, which produce a great amount of varied data. However, some industrial variables are hard to measure because of its high cost, complex installation mechanisms or non-stop production requirements. These variables could be indirectly estimated based on other related variables available in the process. Data-driven methods would be appropriate for this purpose, modelling real and potentially complex industrial processes. In this paper, a methodology to develop a virtual flow meter for industrial processes is presented. It assumes the impossibility of installing a flow meter in the process, so a non-invasive flow meter is used punctually to measure and capture data for training data-driven methods. Three different methods have been trained to obtain the model function: multiple linear regression (MLR), multilayer perceptron (MLP) and long-short term memory (LSTM). The developed virtual flow meter has been tested on a pilot plant built with real industrial equipment. LSTM method yields the best performance in the flow estimation, providing the lowest MAE and RMSE errors. It is able to consider temporal dependencies, besides modelling the nonlinear nature of industrial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abeykoon, C.: Design and applications of soft sensors in polymer processing: a review. IEEE Sens. J. 19(8), 2801–2813 (2018)

    Article  Google Scholar 

  2. Alonso, S., Morán, A., Pérez, D., Prada, M.A., Díaz, I., Domínguez, M.: Estimating cooling production and monitoring efficiency in chillers using a soft sensor. Neural Comput. Appl. 32(23), 17291–17308 (2020). https://doi.org/10.1007/s00521-020-05165-2

    Article  Google Scholar 

  3. Chhantyal, K., Jondahl, M.H., Viumdal, H., Mylvaganam, S.: Upstream ultrasonic level based soft sensing of volumetric flow of non-Newtonian fluids in open Venturi channels. IEEE Sens. J. 18(12), 5002–5013 (2018). https://doi.org/10.1109/JSEN.2018.2831445

    Article  Google Scholar 

  4. Domínguez, M., Fuertes, J.J., Reguera, P., González, J.J., Ramón, J.M.: Maqueta industrial para docencia e investigación. Rev. Iberoamericana Automática Informática Ind. 1(2), 58–63 (2010)

    Google Scholar 

  5. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

  6. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall PTR, Hoboken (1994)

    MATH  Google Scholar 

  7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  8. Kadlec, P., Gabrys, B., Strandt, S.: Data-driven soft sensors in the process industry. Comput. Chem. Eng. 33(4), 795–814 (2009). https://doi.org/10.1016/j.compchemeng.2008.12.012

    Article  Google Scholar 

  9. Li, H., Yu, D., Braun, J.E.: A review of virtual sensing technology and application in building systems. HVAC &R Res. 17(5), 619–645 (2011). https://doi.org/10.1080/10789669.2011.573051

    Article  Google Scholar 

  10. Liu, Y., Xie, M.: Rebooting data-driven soft-sensors in process industries: a review of kernel methods. J. Process Control 89, 58–73 (2020). https://doi.org/10.1016/j.jprocont.2020.03.012

    Article  Google Scholar 

  11. Martin, D., Kühl, N., Satzger, G.: Virtual sensors. Bus. Inf. Syst. Eng. 63(3), 315–323 (2021)

    Article  Google Scholar 

  12. Mattera, C.G., Quevedo, J., Escobet, T., Shaker, H.R., Jradi, M.: A method for fault detection and diagnostics in ventilation units using virtual sensors. Sensors 18(11), 3931 (2018)

    Article  Google Scholar 

  13. McDonald, E., Zmeureanu, R.: Development and testing of a virtual flow meter tool to monitor the performance of cooling plants. Energy Procedia 78, 1129–1134 (2015). https://doi.org/10.1016/j.egypro.2015.11.071

    Article  Google Scholar 

  14. Márquez-Vera, M.A., López-Ortega, O., Ramos-Velasco, L.E., Ortega-Mendoza, R.M., Fernández-Neri, B.J., Zúñiga-Peña, N.S.: Diagnóstico de fallas mediante una LSTM y una red elástica. Rev. Iberoamericana Automática Informática Ind. 18(2), 160–171 (2021). https://doi.org/10.4995/riai.2020.13611

    Article  Google Scholar 

  15. Nair, A.M., Fanta, A., Haugen, F.A., Ratnaweera, H.: Implementing an extended Kalman filter for estimating nutrient composition in a sequential batch MBBR pilot plant. Water Sci. Technol. 80(2), 317–328 (2019). https://doi.org/10.2166/wst.2019.272

    Article  Google Scholar 

  16. de Prada, C., Galán-Casado, S., Pitarch, J.L., Sarabia, D., Galán, A., Gutiérrez, G.: Gemelos digitales en la industria de procesos. Rev. Iberoamericana Automática Informática Ind. 19(3), 285–296 (2022). https://doi.org/10.4995/riai.2022.16901

    Article  Google Scholar 

  17. Sun, Q., Ge, Z.: A survey on deep learning for data-driven soft sensors. IEEE Trans. Ind. Inf. 17(9), 5853–5866 (2021)

    Article  Google Scholar 

  18. Thürlimann, C.M., Dürrenmatt, D.J., Villez, K.: Soft-sensing with qualitative trend analysis for wastewater treatment plant control. Control Eng. Pract. 70, 121–133 (2018). https://doi.org/10.1016/j.conengprac.2017.09.015

    Article  Google Scholar 

  19. Xu, L.D., Xu, E.L., Li, L.: Industry 4.0: state of the art and future trends. Int. J. Prod. Res. 56(8), 2941–2962 (2018). https://doi.org/10.1080/00207543.2018.1444806

    Article  Google Scholar 

  20. Yan, J., Meng, Y., Lu, L., Li, L.: Industrial big data in an industry 4.0 environment: challenges, schemes, and applications for predictive maintenance. IEEE Access 5, 23484–23491 (2017). https://doi.org/10.1109/ACCESS.2017.2765544

    Article  Google Scholar 

  21. Yuan, X., Wang, Y., Yang, C., Ge, Z., Song, Z., Gui, W.: Weighted linear dynamic system for feature representation and soft sensor application in nonlinear dynamic industrial processes. IEEE Trans. Ind. Electron. 65(2), 1508–1517 (2018). https://doi.org/10.1109/TIE.2017.2733443

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish State Research Agency, MCIN/ AEI/ 10.13039/ 501100011033 under Grant PID2020-117890RB-I00. The work of Guzmán González-Mateos was supported by a grant of the Research Programme of the University of León 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl González-Herbón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

González-Herbón, R. et al. (2023). Virtual Flow Meter for an Industrial Process. In: Iliadis, L., Maglogiannis, I., Alonso, S., Jayne, C., Pimenidis, E. (eds) Engineering Applications of Neural Networks. EANN 2023. Communications in Computer and Information Science, vol 1826. Springer, Cham. https://doi.org/10.1007/978-3-031-34204-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34204-2_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34203-5

  • Online ISBN: 978-3-031-34204-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics