Abstract
The digitalization process has emerged strongly in the industry, causing an increase of connected sensors and IIoT devices, which produce a great amount of varied data. However, some industrial variables are hard to measure because of its high cost, complex installation mechanisms or non-stop production requirements. These variables could be indirectly estimated based on other related variables available in the process. Data-driven methods would be appropriate for this purpose, modelling real and potentially complex industrial processes. In this paper, a methodology to develop a virtual flow meter for industrial processes is presented. It assumes the impossibility of installing a flow meter in the process, so a non-invasive flow meter is used punctually to measure and capture data for training data-driven methods. Three different methods have been trained to obtain the model function: multiple linear regression (MLR), multilayer perceptron (MLP) and long-short term memory (LSTM). The developed virtual flow meter has been tested on a pilot plant built with real industrial equipment. LSTM method yields the best performance in the flow estimation, providing the lowest MAE and RMSE errors. It is able to consider temporal dependencies, besides modelling the nonlinear nature of industrial processes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abeykoon, C.: Design and applications of soft sensors in polymer processing: a review. IEEE Sens. J. 19(8), 2801–2813 (2018)
Alonso, S., Morán, A., Pérez, D., Prada, M.A., Díaz, I., Domínguez, M.: Estimating cooling production and monitoring efficiency in chillers using a soft sensor. Neural Comput. Appl. 32(23), 17291–17308 (2020). https://doi.org/10.1007/s00521-020-05165-2
Chhantyal, K., Jondahl, M.H., Viumdal, H., Mylvaganam, S.: Upstream ultrasonic level based soft sensing of volumetric flow of non-Newtonian fluids in open Venturi channels. IEEE Sens. J. 18(12), 5002–5013 (2018). https://doi.org/10.1109/JSEN.2018.2831445
Domínguez, M., Fuertes, J.J., Reguera, P., González, J.J., Ramón, J.M.: Maqueta industrial para docencia e investigación. Rev. Iberoamericana Automática Informática Ind. 1(2), 58–63 (2010)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7
Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall PTR, Hoboken (1994)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735
Kadlec, P., Gabrys, B., Strandt, S.: Data-driven soft sensors in the process industry. Comput. Chem. Eng. 33(4), 795–814 (2009). https://doi.org/10.1016/j.compchemeng.2008.12.012
Li, H., Yu, D., Braun, J.E.: A review of virtual sensing technology and application in building systems. HVAC &R Res. 17(5), 619–645 (2011). https://doi.org/10.1080/10789669.2011.573051
Liu, Y., Xie, M.: Rebooting data-driven soft-sensors in process industries: a review of kernel methods. J. Process Control 89, 58–73 (2020). https://doi.org/10.1016/j.jprocont.2020.03.012
Martin, D., Kühl, N., Satzger, G.: Virtual sensors. Bus. Inf. Syst. Eng. 63(3), 315–323 (2021)
Mattera, C.G., Quevedo, J., Escobet, T., Shaker, H.R., Jradi, M.: A method for fault detection and diagnostics in ventilation units using virtual sensors. Sensors 18(11), 3931 (2018)
McDonald, E., Zmeureanu, R.: Development and testing of a virtual flow meter tool to monitor the performance of cooling plants. Energy Procedia 78, 1129–1134 (2015). https://doi.org/10.1016/j.egypro.2015.11.071
Márquez-Vera, M.A., López-Ortega, O., Ramos-Velasco, L.E., Ortega-Mendoza, R.M., Fernández-Neri, B.J., Zúñiga-Peña, N.S.: Diagnóstico de fallas mediante una LSTM y una red elástica. Rev. Iberoamericana Automática Informática Ind. 18(2), 160–171 (2021). https://doi.org/10.4995/riai.2020.13611
Nair, A.M., Fanta, A., Haugen, F.A., Ratnaweera, H.: Implementing an extended Kalman filter for estimating nutrient composition in a sequential batch MBBR pilot plant. Water Sci. Technol. 80(2), 317–328 (2019). https://doi.org/10.2166/wst.2019.272
de Prada, C., Galán-Casado, S., Pitarch, J.L., Sarabia, D., Galán, A., Gutiérrez, G.: Gemelos digitales en la industria de procesos. Rev. Iberoamericana Automática Informática Ind. 19(3), 285–296 (2022). https://doi.org/10.4995/riai.2022.16901
Sun, Q., Ge, Z.: A survey on deep learning for data-driven soft sensors. IEEE Trans. Ind. Inf. 17(9), 5853–5866 (2021)
Thürlimann, C.M., Dürrenmatt, D.J., Villez, K.: Soft-sensing with qualitative trend analysis for wastewater treatment plant control. Control Eng. Pract. 70, 121–133 (2018). https://doi.org/10.1016/j.conengprac.2017.09.015
Xu, L.D., Xu, E.L., Li, L.: Industry 4.0: state of the art and future trends. Int. J. Prod. Res. 56(8), 2941–2962 (2018). https://doi.org/10.1080/00207543.2018.1444806
Yan, J., Meng, Y., Lu, L., Li, L.: Industrial big data in an industry 4.0 environment: challenges, schemes, and applications for predictive maintenance. IEEE Access 5, 23484–23491 (2017). https://doi.org/10.1109/ACCESS.2017.2765544
Yuan, X., Wang, Y., Yang, C., Ge, Z., Song, Z., Gui, W.: Weighted linear dynamic system for feature representation and soft sensor application in nonlinear dynamic industrial processes. IEEE Trans. Ind. Electron. 65(2), 1508–1517 (2018). https://doi.org/10.1109/TIE.2017.2733443
Acknowledgements
This work was supported by the Spanish State Research Agency, MCIN/ AEI/ 10.13039/ 501100011033 under Grant PID2020-117890RB-I00. The work of Guzmán González-Mateos was supported by a grant of the Research Programme of the University of León 2021.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
González-Herbón, R. et al. (2023). Virtual Flow Meter for an Industrial Process. In: Iliadis, L., Maglogiannis, I., Alonso, S., Jayne, C., Pimenidis, E. (eds) Engineering Applications of Neural Networks. EANN 2023. Communications in Computer and Information Science, vol 1826. Springer, Cham. https://doi.org/10.1007/978-3-031-34204-2_36
Download citation
DOI: https://doi.org/10.1007/978-3-031-34204-2_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34203-5
Online ISBN: 978-3-031-34204-2
eBook Packages: Computer ScienceComputer Science (R0)