Neural Implicit k-Space for Binning-Free Non-Cartesian Cardiac MR Imaging | SpringerLink
Skip to main content

Neural Implicit k-Space for Binning-Free Non-Cartesian Cardiac MR Imaging

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13939))

Included in the following conference series:

  • 4277 Accesses

Abstract

In this work, we propose a novel image reconstruction framework that directly learns a neural implicit representation in k-space for ECG-triggered non-Cartesian Cardiac Magnetic Resonance Imaging (CMR). While existing methods bin acquired data from neighboring time points to reconstruct one phase of the cardiac motion, our framework allows for a continuous, binning-free, and subject-specific k-space representation. We assign a unique coordinate that consists of time, coil index, and frequency domain location to each sampled k-space point. We then learn the subject-specific mapping from these unique coordinates to k-space intensities using a multi-layer perceptron with frequency domain regularization. During inference, we obtain a complete k-space for Cartesian coordinates and an arbitrary temporal resolution. A simple inverse Fourier transform recovers the image, eliminating the need for density compensation and costly non-uniform Fourier transforms for non-Cartesian data. This novel imaging framework was tested on 42 radially sampled datasets from 6 subjects. The proposed method outperforms other techniques qualitatively and quantitatively using data from four and one heartbeat(s) and 30 cardiac phases. Our results for one heartbeat reconstruction of 50 cardiac phases show improved artifact removal and spatio-temporal resolution, leveraging the potential for real-time CMR. (Code available: https://github.com/wenqihuang/NIK_MRI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akçakaya, M., Moeller, S., Weingärtner, S., Uğurbil, K.: Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: database-free deep learning for fast imaging. Magn. Reson. Med. 81(1), 439–453 (2019)

    Article  Google Scholar 

  2. Amiranashvili, T., Lüdke, D., Li, H.B., Menze, B., Zachow, S.: Learning shape reconstruction from sparse measurements with neural implicit functions. In: International Conference on Medical Imaging with Deep Learning, pp. 22–34. PMLR (2022)

    Google Scholar 

  3. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-NeRF: a multiscale representation for anti-aliasing neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5855–5864 (2021)

    Google Scholar 

  4. Chibane, J., Alldieck, T., Pons-Moll, G.: Implicit functions in feature space for 3D shape reconstruction and completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6970–6981 (2020)

    Google Scholar 

  5. Griswold, M.A., et al.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med.: Official J. Int. Soc. Magn. Reson. Med. 47(6), 1202–1210 (2002)

    Article  Google Scholar 

  6. Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018)

    Article  Google Scholar 

  7. Huang, W., et al.: Deep low-rank plus sparse network for dynamic MR imaging. Med. Image Anal. 73, 102190 (2021)

    Article  Google Scholar 

  8. Kuang, K., et al.: What makes for automatic reconstruction of pulmonary segments. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, pp. 495–505. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_47

    Chapter  Google Scholar 

  9. Mildenhall, B., Hedman, P., Martin-Brualla, R., Srinivasan, P.P., Barron, J.T.: NeRF in the dark: high dynamic range view synthesis from noisy raw images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16190–16199 (2022)

    Google Scholar 

  10. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  11. Otazo, R., Candes, E., Sodickson, D.K.: Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magn. Reson. Med. 73(3), 1125–1136 (2015)

    Article  Google Scholar 

  12. Pipe, J.G., Menon, P.: Sampling density compensation in MRI: rationale and an iterative numerical solution. Magn. Reson. Med.: Official J. Int. Soc. Magn. Reson. Med. 41(1), 179–186 (1999)

    Article  Google Scholar 

  13. Pruessmann, K.P., Weiger, M., Börnert, P., Boesiger, P.: Advances in sensitivity encoding with arbitrary k-space trajectories. Magn. Reson. Med.: Official J. Int. Soc. Magn. Reson. Med. 46(4), 638–651 (2001)

    Article  Google Scholar 

  14. Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: SENSE: sensitivity encoding for fast MRI. Magn. Reson. Med.: Official J. Int. Soc. Magn. Reson. Med. 42(5), 952–962 (1999)

    Article  Google Scholar 

  15. Qin, C., Schlemper, J., Caballero, J., Price, A.N., Hajnal, J.V., Rueckert, D.: Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 38(1), 280–290 (2018)

    Article  Google Scholar 

  16. Ramzi, Z., Chaithya, G., Starck, J.L., Ciuciu, P.: NC-PDNet: a density-compensated unrolled network for 2D and 3D non-Cartesian MRI reconstruction. IEEE Trans. Med. Imaging 41, 1625–1638 (2022)

    Article  Google Scholar 

  17. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A., Rueckert, D.: A deep cascade of convolutional neural networks for MR image reconstruction. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 647–658. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_51

    Chapter  Google Scholar 

  18. Shen, L., Pauly, J., Xing, L.: NeRP: implicit neural representation learning with prior embedding for sparsely sampled image reconstruction. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  19. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. In: Advances in Neural Information Processing Systems, vol. 33, pp. 7462–7473 (2020)

    Google Scholar 

  20. Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. In: Advances in Neural Information Processing Systems, vol. 33, pp. 7537–7547 (2020)

    Google Scholar 

  21. Uecker, M., et al.: ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn. Reson. Med. 71(3), 990–1001 (2014)

    Article  Google Scholar 

  22. Vasudevan, V., et al.: Neural representation for three-dimensional dose distribution and its applications in precision radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 114(3), e552 (2022)

    Article  Google Scholar 

  23. Vasudevan, V., et al.: Implicit neural representation for radiation therapy dose distribution. Phys. Med. Biol. 67(12), 125014 (2022)

    Article  Google Scholar 

  24. Wang, S., et al.: Accelerating magnetic resonance imaging via deep learning. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 514–517. IEEE (2016)

    Google Scholar 

  25. Wolterink, J.M., Zwienenberg, J.C., Brune, C.: Implicit neural representations for deformable image registration. In: Medical Imaging with Deep Learning (2021)

    Google Scholar 

  26. Wright, K.L., Hamilton, J.I., Griswold, M.A., Gulani, V., Seiberlich, N.: Non-cartesian parallel imaging reconstruction. J. Magn. Reson. Imaging 40(5), 1022–1040 (2014)

    Article  Google Scholar 

  27. Yaman, B., Hosseini, S.A.H., Moeller, S., Ellermann, J., Uğurbil, K., Akçakaya, M.: Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data. Magn. Reson. Med. 84(6), 3172–3191 (2020)

    Article  Google Scholar 

  28. Yoo, J., Jin, K.H., Gupta, H., Yerly, J., Stuber, M., Unser, M.: Time-dependent deep image prior for dynamic MRI. IEEE Trans. Med. Imaging 40(12), 3337–3348 (2021)

    Article  Google Scholar 

  29. Zang, G., Idoughi, R., Li, R., Wonka, P., Heidrich, W.: IntraTomo: self-supervised learning-based tomography via sinogram synthesis and prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1960–1970 (2021)

    Google Scholar 

  30. Zha, R., Zhang, Y., Li, H.: NAF: neural attenuation fields for sparse-view CBCT reconstruction. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, pp. 442–452. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_42

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenqi Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, W., Li, H.B., Pan, J., Cruz, G., Rueckert, D., Hammernik, K. (2023). Neural Implicit k-Space for Binning-Free Non-Cartesian Cardiac MR Imaging. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds) Information Processing in Medical Imaging. IPMI 2023. Lecture Notes in Computer Science, vol 13939. Springer, Cham. https://doi.org/10.1007/978-3-031-34048-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34048-2_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34047-5

  • Online ISBN: 978-3-031-34048-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics