Abstract
Card-based cryptography allows us to securely compute arbitrary functions using a deck of physical cards. Its performance is mainly measured by the number of used cards and shuffles, and there is a line of work that aims to reduce either of them. One of the seminal work is by Shinagawa and Nuida (Discrete Applied Mathematics 2021) that shows any Boolean function can be constructed by shuffling only once based on the garbling scheme. Their construction requires \(2n + 24g\) cards for an n-input Boolean function that is represented by g logical gates. In this paper, we reduce the number of cards to \(2n + 8g\) for arbitrary functions while keeping it working with only one shuffle.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that a similar procedure was used for changing an integer encoding into two commitments [22].
References
Attrapadung, N., et al.: Oblivious linear group actions and applications. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021, pp. 630–650. ACM Press (2021). https://doi.org/10.1145/3460120.3484584
Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press (1990). https://doi.org/10.1145/100216.100287
Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796. ACM Press (2012). https://doi.org/10.1145/2382196.2382279
Boer, B.: More efficient match-making and satisfiability The Five Card Trick. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_23
Haga, R., Hayashi, Y., Miyahara, D., Mizuki, T.: Card-minimal protocols for three-input functions with standard playing cards. In: AFRICACRYPT 2022. LNCS, vol. 13503, pp. 448–468. Springer, Cham (2022)
Heather, J., Schneider, S., Teague, V.: Cryptographic protocols with everyday objects. Formal Aspects Comput. 26(1), 37–62 (2014). https://doi.org/10.1007/s00165-013-0274-7
Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a hidden random permutation without fixed points. In: Calude, C.S., Dinneen, M.J. (eds.) UCNC 2015. LNCS, vol. 9252, pp. 215–226. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21819-9_16
Isuzugawa, R., Miyahara, D., Mizuki, T.: Zero-knowledge proof protocol for Cryptarithmetic using dihedral cards. In: Kostitsyna, I., Orponen, P. (eds.) UCNC 2021. LNCS, vol. 12984, pp. 51–67. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87993-8_4
Kastner, J., Koch, A., Walzer, S., Miyahara, D., Hayashi, Y., Mizuki, T., Sone, H.: The minimum number of cards in practical card-based protocols. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 126–155. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_5
Koch, A., Schrempp, M., Kirsten, M.: Card-based cryptography meets formal verification. New Gener. Comput. 39(1), 115–158 (2021). https://doi.org/10.1007/s00354-020-00120-0
Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a minimal number of cards. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 783–807. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_32
Koyama, H., Miyahara, D., Mizuki, T., Sone, H.: A secure three-input AND protocol with a standard deck of minimal cards. In: Santhanam, R., Musatov, D. (eds.) CSR 2021. LNCS, vol. 12730, pp. 242–256. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79416-3_14
Kuzuma, T., Toyoda, K., Miyahara, D., Mizuki, T.: Card-based single-shuffle protocols for secure multiple-input AND and XOR computations. In: ASIA Public-Key Cryptography, pp. 51–58. ACM, NY (2022). https://doi.org/10.1145/3494105.3526236
Miyahara, D., Ueda, I., Hayashi, Y., Mizuki, T., Sone, H.: Analyzing execution time of card-based protocols. In: Stepney, S., Verlan, S. (eds.) UCNC 2018. LNCS, vol. 10867, pp. 145–158. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92435-9_11
Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 162–173. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39074-6_16
Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four cards. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 598–606. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_36
Mizuki, T., Shizuya, H.: A formalization of card-based cryptographic protocols via abstract machine. Int. J. Inf. Secur. 13(1), 15–23 (2013). https://doi.org/10.1007/s10207-013-0219-4
Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8_36
Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols for any boolean function. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 110–121. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17142-5_11
Ruangwises, S., Itoh, T.: Physical ZKP for connected spanning subgraph: applications to bridges puzzle and other problems. In: Kostitsyna, I., Orponen, P. (eds.) UCNC 2021. LNCS, vol. 12984, pp. 149–163. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87993-8_10
Ruangwises, S., Itoh, T.: Securely computing the n-variable equality function with 2n cards. Theor. Comput. Sci. 887, 99–110 (2021). https://doi.org/10.1016/j.tcs.2021.07.007
Shikata, H., Toyoda, K., Miyahara, D., Mizuki, T.: Card-minimal protocols for symmetric boolean functions of more than seven inputs. In: ICTAC 2022. LNCS, vol. 13572, pp. 388–406. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17715-6_25
Shinagawa, K., Mizuki, T.: The six-card trick: secure computation of three-input equality. In: Lee, K. (ed.) ICISC 2018. LNCS, vol. 11396, pp. 123–131. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12146-4_8
Shinagawa, K., Nuida, K.: A single shuffle is enough for secure card-based computation of any boolean circuit. Discret. Appl. Math. 289, 248–261 (2021). https://doi.org/10.1016/j.dam.2020.10.013
Toyoda, K., Miyahara, D., Mizuki, T.: Another use of the five-card trick: card-minimal secure three-input majority function evaluation. In: Adhikari, A., Küsters, R., Preneel, B. (eds.) INDOCRYPT 2021. LNCS, vol. 13143, pp. 536–555. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92518-5_24
Acknowledgements
This work was supported by JSPS KAKENHI Grant Numbers JP21H05052, JP21K11881, and JST, CREST Grant Number JPMJCR22M1, Japan.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tozawa, K., Morita, H., Mizuki, T. (2023). Single-Shuffle Card-Based Protocol with Eight Cards per Gate. In: Genova, D., Kari, J. (eds) Unconventional Computation and Natural Computation. UCNC 2023. Lecture Notes in Computer Science, vol 14003. Springer, Cham. https://doi.org/10.1007/978-3-031-34034-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-34034-5_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34033-8
Online ISBN: 978-3-031-34034-5
eBook Packages: Computer ScienceComputer Science (R0)