K-Hub: A Modular Ontology to Support Document Retrieval and Knowledge Extraction in Industry 5.0 | SpringerLink
Skip to main content

K-Hub: A Modular Ontology to Support Document Retrieval and Knowledge Extraction in Industry 5.0

  • Conference paper
  • First Online:
The Semantic Web (ESWC 2023)

Abstract

Digitalization is entering the industrial sector and different needs are emerging to support shop floor operators; in particular, they need to retrieve information to support their operations (e.g., during maintenance activities), from structured and unstructured sources, as well as from other people’s experience. Sharing knowledge and making it accessible to industrial workers is therefore a key challenge that Semantic Web technologies are able to address and solve. In this paper, we present a modular ontology that we engineered in order to support the collection, extraction and structuring of relevant information for industrial operators in a “knowledge hub” (K-Hub). In particular, our K-Hub ontology covers several aspects, from document annotation/retrieval to procedure support, from manufacturing domain concepts to company-specific information. We discuss its engineering process, extensibility and availability, as well as its current and future application scenarios to support industrial workers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Cf. https://research-and-innovation.ec.europa.eu/research-area/industry/industry-50_en.

  2. 2.

    http://purl.org/net/p-plan.

  3. 3.

    http://purl.org/provone.

  4. 4.

    https://www.w3.org/TR/annotation-model/.

  5. 5.

    The full list of CQs and facts is available at https://github.com/cefriel/k-hub-ontology/blob/main/PaperCompetencyQuestions_Facts.xlsx.

  6. 6.

    Cf. https://chowlk.linkeddata.es/chowlk_spec.

  7. 7.

    https://github.com/dgarijo/Widoco/.

  8. 8.

    https://www.doi.org/10.5281/zenodo.7443000.

  9. 9.

    We are currently working on an ontology-extension of the PAWLS tool for the manual annotation of PDF documents, cf. https://github.com/cefriel/onto-pawls.

References

  1. Bach, N., Badaskar, S.: A survey on relation extraction. Lang. Technol. Inst. Carnegie Mellon University 178, 15 (2007)

    Google Scholar 

  2. Bellan, P., Dragoni, M., Ghidini, C.: Process extraction from text: state of the art and challenges for the future. CoRR abs/2110.03754 (2021)

    Google Scholar 

  3. Berrueta, D., Phipps, J.: Best Practice Recipes for Publishing RDF Vocabularies (2008). https://www.w3.org/TR/swbp-vocab-pub/

  4. Butt, A.S., Fitch, P.: ProvONE+: a provenance model for scientific workflows. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds.) WISE 2020. LNCS, vol. 12343, pp. 431–444. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62008-0_30

    Chapter  Google Scholar 

  5. Corcho, O., et al.: A high-level ontology network for ICT infrastructures. In: Hotho, A., et al. (eds.) ISWC 2021. LNCS, vol. 12922, pp. 446–462. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88361-4_26

    Chapter  Google Scholar 

  6. Franc, Y.L.: OntoCommons D3.2 - Report on existing domain ontologies in identified domains (2022). https://doi.org/10.5281/zenodo.6504553

  7. Gangemi, A., Peroni, S., Shotton, D.M., Vitali, F.: The publishing workflow ontology (PWO). Semant. Web 8(5), 703–718 (2017)

    Article  Google Scholar 

  8. Garijo, D.: WIDOCO: a wizard for documenting ontologies. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 94–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_9. http://dgarijo.com/papers/widoco-iswc2017.pdf

  9. Garijo, D., Gil, Y.: Augmenting prov with plans in p-plan: scientific processes as linked data. In: CEUR Workshop Proceedings (2012)

    Google Scholar 

  10. Garijo, D., Gil, Y., Corcho, Ó.: Abstract, link, publish, exploit: an end to end framework for workflow sharing. Future Gener. Comput. Syst. 75, 271–283 (2017)

    Article  Google Scholar 

  11. Grau, B.C.: Privacy in ontology-based information systems: a pending matter. Semant. Web 1(1–2), 137–141 (2010)

    Article  Google Scholar 

  12. Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, 2nd edn. Prentice Hall, Pearson Education International (2009)

    Google Scholar 

  13. Kamble, S.S., Gunasekaran, A., Gawankar, S.A.: Sustainable industry 4.0 framework: a systematic literature review identifying the current trends and future perspectives. Process Saf. Environ. Prot. 117, 408–425 (2018)

    Article  Google Scholar 

  14. Kulvatunyou, B.S., Wallace, E., Kiritsis, D., Smith, B., Will, C.: The industrial ontologies foundry proof-of-concept project. In: Moon, I., Lee, G.M., Park, J., Kiritsis, D., von Cieminski, G. (eds.) APMS 2018. IAICT, vol. 536, pp. 402–409. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99707-0_50

    Chapter  Google Scholar 

  15. Le Clair, A., Marinache, A., El Ghalayini, H., Maccaull, W., Khedri, R.: A review on ontology modularization techniques - a multi-dimensional perspective. IEEE Trans. Knowl. Data Eng. 35, 4376–4394 (2022)

    Google Scholar 

  16. Li, D., Landström, A., Fast-Berglund, Å., Almström, P.: Human-centred dissemination of data, information and knowledge in industry 4.0. Procedia CIRP 84, 380–386 (2019)

    Article  Google Scholar 

  17. Martínez-Rodríguez, J., Hogan, A., López-Arévalo, I.: Information extraction meets the semantic web: a survey. Semant. Web 11(2), 255–335 (2020)

    Article  Google Scholar 

  18. Miles, A., Bechhofer, S.: SKOS simple knowledge organization system reference (2009)

    Google Scholar 

  19. Nakashole, N., Tylenda, T., Weikum, G.: Fine-grained semantic typing of emerging entities. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1488–1497 (2013)

    Google Scholar 

  20. Poveda-Villalón, M., Fernández-Izquierdo, A., Fernández-López, M., García-Castro, R.: LOT: an industrial oriented ontology engineering framework. Eng. Appl. Artif. Intell. 111, 104755 (2022)

    Article  Google Scholar 

  21. Rula, A., Re Calegari, G., Azzini, A., Bucci, D., Baroni, I., Celino, I.: Eliciting and curating procedural knowledge in industry: challenges and opportunities. In: Proceedings of the Third Conference on Digital Curation Technologies (Qurator 2022), Berlin, Germany, 19th–23rd September 2022. CEUR Workshop Proceedings, vol. 3234. CEUR-WS.org (2022). https://ceur-ws.org/Vol-3234/paper4.pdf

  22. de Souza, H.C., Moura, A.M.D.C., Cavalcanti, M.C.: Integrating ontologies based on P2P mappings. IEEE Trans. Syst. Man Cybern. - Part A Syst. Hum. 40(5), 1071–1082 (2010). https://doi.org/10.1109/TSMCA.2010.2044880

    Article  Google Scholar 

  23. Thakker, D., et al.: SAREF4INMA: a SAREF extension for the industry and manufacturing domain. Semant. Web 11(6), 911–926 (2020)

    Article  Google Scholar 

  24. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the K-HUB “Manufacturing Knowledge Hub” project, co-funded by EIT Manufacturing (project id 22330). The authors would like to specifically thank the industrial partners of the project for their invaluable support in both the requirement elicitation and the ontology validation activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anisa Rula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rula, A. et al. (2023). K-Hub: A Modular Ontology to Support Document Retrieval and Knowledge Extraction in Industry 5.0. In: Pesquita, C., et al. The Semantic Web. ESWC 2023. Lecture Notes in Computer Science, vol 13870. Springer, Cham. https://doi.org/10.1007/978-3-031-33455-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33455-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33454-2

  • Online ISBN: 978-3-031-33455-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics