Recurrence and Frequencies | SpringerLink
Skip to main content

Recurrence and Frequencies

  • Conference paper
  • First Online:
Combinatorics on Words (WORDS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13899))

Included in the following conference series:

Abstract

Given an infinite word with values in a finite alphabet that admit frequencies for all its factors, the smallest frequency function associates with a given positive integer the smallest frequency for factors of this length, and the recurrence function measures the gaps between successive occurrences of factors. We develop in this paper the relations between the growth orders of the smallest frequency and of the recurrence functions. As proved by M. Boshernitzan, linearly recurrent words are characterized in terms of the smallest frequency function. In this paper, we see how to extend this result beyond the case of linearly recurrent words. We first establish a general relation between the smallest frequency and the recurrence functions. Given a lower bound for the smallest frequency function, this relation provides an upper bound for the recurrence function which involves the primitive of this lower bound. We then see how to improve this relation in the case of Sturmian words where the product of the smallest frequency and the recurrence function is bounded for most of the lengths of factors. We also indicate how to construct Sturmian words having a prescribed behaviour for the smallest frequency function, and for the product of the smallest frequency and the recurrence function.

This work was supported by the Agence Nationale de la Recherche through the project “Codys” (ANR-18-CE40-0007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aliste-Prieto, J., Coronel, D., Cortez, M.I., Durand, F., Petite, S.: Linearly repetitive Delone sets. In: Kellendonk, J., Lenz, D., Savinien, J. (eds.) Mathematics of Aperiodic Order. PM, vol. 309, pp. 195–222. Springer, Basel (2015). https://doi.org/10.1007/978-3-0348-0903-0_6

    Chapter  Google Scholar 

  2. Berthé, V.: Fréquences des facteurs des suites sturmiennes. Theor. Comput. Sci. 165(2), 295–309 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berthé, V., Vuillon, L.: Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences. Disc. Math. 223(2000), 27–53 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berthé, V., Cesaratto, E., Rotondo, P., Vallée, B., Viola, A.: Recurrence function on Sturmian words: a probabilistic study. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 116–128. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48057-1_9

    Chapter  Google Scholar 

  5. Émile Borel, M.: Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti del Circolo Matematico di Palermo (1884–1940) 27(1), 247–271 (1909). https://doi.org/10.1007/BF03019651

    Article  MATH  Google Scholar 

  6. Boshernitzan, M.: A condition for unique ergodicity of minimal symbolic flows. Ergod. Theor. Dyn. Syst. 12(3), 425–428 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cassaigne, J.: Limit values of the recurrence quotient of Sturmian sequences. Theor. Comput. Sci. 218(1), 3–12 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berthé, V., Rigo, M. (eds.): Combinatorics, Automata and Number Theory. Encyclopedia of Mathematics and its Applications, vol. 135. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  9. Durand, F., Host, B., Skau, C.: Substitutions, Bratteli diagrams and dimension groups. Ergod. Theor. Dyn. Syst. 19, 952–993 (1999)

    Article  MATH  Google Scholar 

  10. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Oxford Science Publications, Published by Oxford University Press, Oxford (1980)

    Google Scholar 

  11. Haynes, A., Koivusalo, H., Walton, J.: A characterization of linearly repetitive cut and project sets. Nonlinearity 31(2), 515–539 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Haynes, A., Marklof, J.: Higher dimensional Steinhaus and Slater problems via homogeneous dynamics. Ann. Sci. Éc. Norm. Supér. 4(53), 537–557 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Haynes, A., Marklof, J.: A five distance theorem for Kronecker sequences. Int. Math. Res. Not. IMRN 24, 19747–19789 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Keane, M.: Non-ergodic interval exchange transformations. Israel J. Math. 26, 188–196 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lagarias, J.C., Pleasants, P.A.B.: Local complexity of Delone sets and crystallinity. Can. Math. Bull. 45(4), 634–652 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lagarias, J.C., Pleasants, P.A.B.: Repetitive Delone sets and quasicrystals. Ergod. Theor. Dyn. Syst. 23, 831–867 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics and its Applications, vol. 90. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  18. Morse, M., Hedlund, G.A.: Symbolic dynamics. Am. J. Math. 60, 815–866 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  19. Morse, M., Hedlund, G.A.: Symbolic dynamics II. Sturmian trajectories. Am. J. Math. 62, 1–42 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fogg, N.P.: Substitutions in Dynamics, Arithmetics and Combinatorics. Lecture Notes in Mathematics, vol. 1794. Springer, Heidelberg (2002). https://doi.org/10.1007/b13861

  21. Rotondo, P., Vallée, B: The recurrence function of a random Sturmian word. In: 2017 Proceedings of the Fourteenth Workshop on Analytic Algorithmics and Combinatorics (ANALCO), pp. 100–114. SIAM, Philadelphia (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Berthé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berthé, V., Mimouni, A. (2023). Recurrence and Frequencies. In: Frid, A., Mercaş, R. (eds) Combinatorics on Words. WORDS 2023. Lecture Notes in Computer Science, vol 13899. Springer, Cham. https://doi.org/10.1007/978-3-031-33180-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33180-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33179-4

  • Online ISBN: 978-3-031-33180-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics