A Nearly Optimal Randomized Algorithm for Explorable Heap Selection | SpringerLink
Skip to main content

A Nearly Optimal Randomized Algorithm for Explorable Heap Selection

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2023)

Abstract

Explorable heap selection is the problem of selecting the \(n^{\text {th}}\) smallest value in a binary heap. The key values can only be accessed by traversing through the underlying infinite binary tree, and the complexity of the algorithm is measured by the total distance traveled in the tree (each edge has unit cost). This problem was originally proposed as a model to study search strategies for the branch-and-bound algorithm with storage restrictions by Karp, Saks and Widgerson (FOCS ’86), who gave deterministic and randomized \(n\cdot \exp (O(\sqrt{\log {n}}))\) time algorithms using \(O(\log (n)^{2.5})\) and \(O(\sqrt{\log n})\) space respectively. We present a new randomized algorithm with running time \(O(n\log (n)^3)\) against an oblivious adversary using \(O(\log n)\) space, substantially improving the previous best randomized running time at the expense of slightly increased space usage. We also show an \(\varOmega (\log (n)n/\log (\log (n)))\) lower bound for any algorithm that solves the problem in the same amount of space, indicating that our algorithm is nearly optimal.

Due to space limitations, we have omitted several proofs. These can be found in [7].

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement QIP–805241).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

     [13] did not name the problem, so we have given a descriptive name here.

References

  1. Achterberg, T.: Constraint Integer Programming. Ph.D. thesis, TU Berlin (2009)

    Google Scholar 

  2. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett. 33(1), 42–54 (2005). https://doi.org/10.1016/j.orl.2004.04.002

    Article  MathSciNet  MATH  Google Scholar 

  3. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous, vol. 55. Springer, New York (2006). https://doi.org/10.1007/b100809

  4. Balcan, M.F., Dick, T., Sandholm, T., Vitercik, E.: Learning to branch. In: ICML (2018)

    Google Scholar 

  5. Banerjee, S., Cohen-Addad, V., Gupta, A., Li, Z.: Graph searching with predictions, December 2022

    Google Scholar 

  6. Berman, P.: On-line searching and navigation. In: Fiat, A., Woeginger, G.J. (eds.) Online Algorithms. LNCS, vol. 1442, pp. 232–241. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0029571

  7. Borst, S., Dadush, D., Huiberts, S., Kashaev, D.: A nearly optimal randomized algorithm for explorable heap selection, October 2022. https://doi.org/10.48550/arXiv.2210.05982

  8. Clausen, J., Perregaard, M.: On the best search strategy in parallel branch-and-bound: best-first search versus lazy depth-first search. Ann. Oper. Res. 90, 1–17 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dasgupta, P., Chakrabarti, P.P., DeSarkar, S.C.: A near optimal algorithm for the extended cow-path problem in the presence of relative errors. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 22–36. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60692-0_38

    Chapter  MATH  Google Scholar 

  10. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. J. Algorithms 51(1), 38–63 (2004). https://doi.org/10.1016/j.jalgor.2003.10.002

    Article  MathSciNet  MATH  Google Scholar 

  11. Frederickson, G.: An optimal algorithm for selection in a min-heap. Inf. Comput. 104(2), 197–214 (1993). https://doi.org/10.1006/inco.1993.1030

    Article  MathSciNet  MATH  Google Scholar 

  12. Gleixner, A.M.: Personal communication, November 2022

    Google Scholar 

  13. Karp, R.M., Saks, M.E., Wigderson, A.: On a search problem related to branch-and-bound procedures. In: FOCS, pp. 19–28 (1986)

    Google Scholar 

  14. Linderoth, J.T., Savelsbergh, M.W.P.: A computational study of search strategies for mixed integer programming. INFORMS J. Comput. 11(2), 173–187 (1999). https://doi.org/10.1287/ijoc.11.2.173

    Article  MathSciNet  MATH  Google Scholar 

  15. Lodi, A., Zarpellon, G.: On learning and branching: a survey. TOP 25(2), 207–236 (2017). https://doi.org/10.1007/s11750-017-0451-6

    Article  MathSciNet  MATH  Google Scholar 

  16. Morrison, D.R., Jacobson, S.H., Sauppe, J.J., Sewell, E.C.: Branch-and-bound algorithms: a survey of recent advances in searching, branching, and pruning. Discret. Optim. 19, 79–102 (2016). https://doi.org/10.1016/j.disopt.2016.01.005

    Article  MathSciNet  MATH  Google Scholar 

  17. Munro, J., Paterson, M.: Selection and sorting with limited storage. Theoret. Comput. Sci. 12(3), 315–323 (1980). https://doi.org/10.1016/0304-3975(80)90061-4

    Article  MathSciNet  MATH  Google Scholar 

  18. Pietracaprina, A., Pucci, G., Silvestri, F., Vandin, F.: Space-efficient parallel algorithms for combinatorial search problems. J. Parallel Distrib. Comput. 76, 58–65 (2015)

    Article  MATH  Google Scholar 

  19. Suhl, L.M., Suhl, U.H.: A fast LU update for linear programming. Ann. Oper. Res. 43(1), 33–47 (1993). https://doi.org/10.1007/BF02025534

    Article  MathSciNet  MATH  Google Scholar 

  20. Kamphans, T.: Models and algorithms for online exploration and search. Ph.D. thesis, Rheinische Friedrich-Wilhelms-Universität Bonn (2006). https://hdl.handle.net/20.500.11811/2622

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sander Borst , Daniel Dadush , Sophie Huiberts or Danish Kashaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borst, S., Dadush, D., Huiberts, S., Kashaev, D. (2023). A Nearly Optimal Randomized Algorithm for Explorable Heap Selection. In: Del Pia, A., Kaibel, V. (eds) Integer Programming and Combinatorial Optimization. IPCO 2023. Lecture Notes in Computer Science, vol 13904. Springer, Cham. https://doi.org/10.1007/978-3-031-32726-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32726-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32725-4

  • Online ISBN: 978-3-031-32726-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics