Analyzing Urban Mobility Based on Smartphone Data: The Lisbon Case Study | SpringerLink
Skip to main content

Analyzing Urban Mobility Based on Smartphone Data: The Lisbon Case Study

  • Conference paper
  • First Online:
Intelligent Transport Systems (INTSYS 2022)

Abstract

Our paper addresses the mobility patterns in Lisbon in the vicinity of historical and transportation points of interest, with a case study conducted in the parish of Santa Maria Maior, a vibrant touristic neighborhood. We propose a data science-based approach to analyze such patterns. Our dataset includes five months of georeferenced mobile phone data, collected during late 2021 and early 2022, provided by the municipality of Lisbon. We performed a systematic literature review, using the PRISMA methodology and adopted the CRISP-DM methodology, to perform data curation, statistical and clustering analysis, and visualization, following the recommendations of the literature. For clustering we used the DBSCAN algorithm. We found eight clusters in Santa Maria Maior, with outstanding clusters along 28-E tram and Lisbon Cruise Terminal, where mobility is high, particularly for non-roaming travelers. This paper contributes to the digital transformation of Lisbon into a smart city, by improving improved understanding of urban mobility patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mobilidade na cidade de Lisboa com base em dados de telemóveis – LxDataLab. https://lisboainteligente.cm-lisboa.pt/lxdatalab/desafios/mobilidade-na-cidade-de-lisboa-com-base-em-dados-de-telemoveis/. Accessed 30 Aug 2022

  2. LxDataLab - Lisboa Inteligente. https://lisboainteligente.cm-lisboa.pt/lxi-iniciativas/lxdatalab/. Accessed 03 Sep 2022

  3. CRISP-DM - a framework for data mining & analysis. https://thinkinsights.net/data-literacy/crisp-dm/. Accessed 21 Oct 2022

  4. Schröer, C., Kruse, F., Gómez, J.M.: A systematic literature review on applying CRISP-DM process model. Procedia Comput. Sci. 181, 526–534 (2021). https://doi.org/10.1016/J.PROCS.2021.01.199

    Article  Google Scholar 

  5. Page, M.J., et al.: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372 (2021). https://doi.org/10.1136/BMJ.N71

  6. Saliba, M., Abela, C., Layfield, C.: Vehicular traffic flow intensity detection and prediction through mobile data usage. In: CEUR Workshop Proceedings, vol. 2259, pp. 66–77 (2018)

    Google Scholar 

  7. Irrevaldy, Saptawati, G.A.P.: Spatio-temporal mining to identify potential traff congestion based on transportation mode. In: Proceedings of 2017 International Conference on Data and Software Engineering, ICoDSE, pp. 1–6 (2017). https://doi.org/10.1109/ICODSE.2017.8285857

  8. Li, C., Hu, J., Dai, Z., Fan, Z., Wu, Z.: Understanding individual mobility pattern and portrait depiction based on mobile phone data. ISPRS Int. J. Geoinf. 9(11), 666 (2020). https://doi.org/10.3390/ijgi9110666

    Article  Google Scholar 

  9. Li, M., Jin, B., Tang, H., Zhang, F.: Clustering large-scale origin-destination pairs: a case study for public transit in Beijing. In: Proceedings - 2018 IEEE SmartWorld, Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People and Smart City Innovations, SmartWorld/UIC/ATC/ScalCom/CBDCo, pp. 705–712, (2018). https://doi.org/10.1109/SmartWorld.2018.00137

  10. Qin, S., Man, J., Wang, X., Li, C., Dong, H., Ge, X.: Applying big data analytics to monitor tourist flow for the scenic area operation management. Discrete Dyn. Nat. Soc. 2019, 1–11 (2019). https://doi.org/10.1155/2019/8239047

    Article  Google Scholar 

  11. Balzotti, C., Bragagnini, A., Briani, M., Cristiani, E.: Understanding human mobility flows from aggregated mobile phone data. IFAC-PapersOnLine 51(9), 25–30 (2018). https://doi.org/10.1016/j.ifacol.2018.07.005

    Article  Google Scholar 

  12. Yuan, Y., Raubal, M.: Extracting dynamic urban mobility patterns from mobile phone data. In: Xiao, N., Kwan, M.-P., Goodchild, M.F., Shekhar, S. (eds.) GIScience 2012. LNCS, vol. 7478, pp. 354–367. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33024-7_26

    Chapter  Google Scholar 

  13. Wang, P., Zhang, J., Liu, G., Fuu, Y., Aggarwal, C.: Ensemble-spotting: ranking urban vibrancy via POI embedding with multi-view spatial graphs. In: SIAM International Conference on Data Mining, SDM 2018, pp. 351–359 (2018). https://doi.org/10.1137/1.9781611975321.40

  14. Martins, T.G., Lago, N., Santana, E.F.Z., Telea, A., Kon, F., de Souza, H.A.: Using bundling to visualize multivariate urban mobility structure patterns in the São Paulo metropolitan area. J. Internet Serv. Appl. 12(1), 1–32 (2021). https://doi.org/10.1186/s13174-021-00136-9

    Article  Google Scholar 

  15. Senaratne, H., et al.: Urban mobility analysis with mobile network data: a visual analytics approach. IEEE Trans. Intell. Transp. Syst. 19(5), 1537–1546 (2018). https://doi.org/10.1109/TITS.2017.2727281

    Article  Google Scholar 

  16. Fontes, T., Arantes, M., Figueiredo, P.V., Novais, P.: A cluster-based approach using smartphone data for bike-sharing docking stations identification: lisbon case study. Smart Cities 5(1), 251–275 (2022). https://doi.org/10.3390/smartcities5010016

    Article  Google Scholar 

  17. Haidery, S.A., Ullah, H., Khan, N.U., Fatima, K., Rizvi, S.S., Kwon, S.J.: Role of big data in the development of smart city by analyzing the density of residents in shanghai. Electronics 9(5), 837 (2020). https://doi.org/10.3390/electronics9050837

    Article  Google Scholar 

  18. Diário da República, 1.a série — N.o 216 — 8 de novembro de 2012 (2012). https://files.dre.pt/1s/2012/11/21600/0645406460.pdf. Accessed 09 Sep 2022

  19. OSMnx 1.2.2 — OSMnx 1.2.2 documentation. https://osmnx.readthedocs.io/en/stable/. Accessed 09 Sep 2022

Download references

Acknowledgements

This work is partially funded by national funds through FCT - Fundação para a Ciência e Tecnologia, I.P., under the project FCT UIDB/04466/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Sales Dias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leal, D., Albuquerque, V., Dias, M.S., Ferreira, J.C. (2023). Analyzing Urban Mobility Based on Smartphone Data: The Lisbon Case Study. In: Martins, A.L., Ferreira, J.C., Kocian, A., Tokkozhina, U. (eds) Intelligent Transport Systems. INTSYS 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 486. Springer, Cham. https://doi.org/10.1007/978-3-031-30855-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30855-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30854-3

  • Online ISBN: 978-3-031-30855-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics