Generic Attack on Duplex-Based AEAD Modes Using Random Function Statistics | SpringerLink
Skip to main content

Generic Attack on Duplex-Based AEAD Modes Using Random Function Statistics

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2023 (EUROCRYPT 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14007))

Abstract

Duplex-based authenticated encryption modes with a sufficiently large key length are proven to be secure up to the birthday bound \(2^{\frac{c}{2}}\), where c is the capacity. However this bound is not known to be tight and the complexity of the best known generic attack, which is based on multicollisions, is much larger: it reaches \(\frac{2^c}{\alpha }\) where \(\alpha \) represents a small security loss factor. There is thus an uncertainty on the true extent of security beyond the bound \(2^{\frac{c}{2}}\) provided by such constructions. In this paper, we describe a new generic attack against several duplex-based AEAD modes. Our attack leverages random functions statistics and produces a forgery in time complexity \(\mathcal {O}(2^{\frac{3c}{4}})\) using negligible memory and no encryption queries. Furthermore, for some duplex-based modes, our attack recovers the secret key with a negligible amount of additional computations. Most notably, our attack breaks a security claim made by the designers of the NIST lightweight competition candidate Xoodyak. This attack is a step further towards determining the exact security provided by duplex-based constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The name “duplex”, that conveys the idea of a bidirectional process, reflects the fact that in such constructions both a data block injection and a data block extraction to/from the current state can potentially take place between two consecutive invocations of P.

  2. 2.

    Note that in the attack considered in the sequel, \(t_{extra-op}\) will in practice be negligible compared to \(\sigma _e + \sigma _d + q_P\).

  3. 3.

    In other words, the questions whether the “birthday term” \(\frac{2^c}{ \sigma _d}\) is an artifact of the proofs and whether the capacity value c can be safely dimensioned well below 2s, where s denotes the targeted security level remain open.

  4. 4.

    In practice, our cryptanalysis can be easily adapted to attack modes which can process plaintexts of arbitrary length, but this requires a short case-by-case analysis which we provide in Sect. 5. Note that the resulting adjustments have a negligible impact on the complexity of our attack and do not impact its success probability.

  5. 5.

    For more details see for example [27].

  6. 6.

    Each parameter space is well defined according to the analysed AEAD scheme.

  7. 7.

    In decryption queries, nonces can be repeated even in a nonce-respecting setting. For the purpose of our attack, \(x_0\) needs to behave as a point randomly sampled in the graph of \(P_{\beta }\). Thus, we can either require nonces to be randomly sampled or to be arbitrary distinct values.

  8. 8.

    For modes other than the full-state duplex, we could set the associated data to any value. In the case of the full-state duplex, the associated data must be chosen carefully (typically, the attack applies when the AD is set to the empty string).

  9. 9.

    Given a point of the graph x, the introduction of an algorithm which estimates x’s component’s size is going to significantly complicate our attack’s complexity analysis. We believe that we could have designed an attack without this extra algorithm by relying on the fact that a random component is large with great probability. However, unless increasing the complexity of the online phase, we would have then obtained lower success probabilities (roughly around 0.5 rather than close to 1).

  10. 10.

    or greater than \(sn\), but too close to \(sn\) to make the algorithm stop.

  11. 11.

    Note that \(\nu = \frac{1}{4}\) is not the fully optimal choice in general. Rather, the optimal choice for \(\nu \) is \(\nu = \frac{1}{2} \left( \frac{1}{2} - \log _{n}\left( \sqrt{2\pi } / (\sqrt{s^{+}(1-s^{+})}15)\right) \right) \). For example, for \(n = 2^{128}\), the optimal choice is approximately 0.256.

  12. 12.

    The plaintext also allows to verify that the recovered state before the final phase is correct, making the key recovery possible with only a negligible amount of extra computations regardless of the tag length.

  13. 13.

    Here, we make the assumption that the standard deviation for the tail length is the same as the cycle length’s. This assumption does not affect our attack, it only affects how to interpret our test results.

  14. 14.

    To reduce the execution time of the implementation, to detect whether or not two points \(x,x'\) are in the same component, we checked whether \(\mu (x) = \mu (x')\) instead of doing the exhaustive verification made in is_big.

  15. 15.

    Although the first mode that uses a feedback function is COFB [17], this mode is out of scope as it is not duplex-based (in fact, it is not even permutation-based but block-cipher based).

  16. 16.

    For more details on Xoodyak’s specification, we refer to [18] at page 62 for the keyed mode together with pages 67 and 68 for the full description of what is relevant for our analysis. https://csrc.nist.gov/Projects/lightweight-cryptography/.

  17. 17.

    Note that the rate called r in this paper is denoted by n in Xoodyak’s specification.

  18. 18.

    This value is called \(\rho _{max}\) in [7, p. 335].

References

  1. Aumasson, J.P., Jovanovic, P., Neves, S.: NORX v2. Submission to the Caesar competition (2015). https://competitions.cr.yp.to/round2/norxv20.pdf

  2. Aumasson, J.P., Jovanovic, P., Neves, S.: NORX v3. Submission to the Caesar competition (2016). https://competitions.cr.yp.to/round3/norxv30.pdf

  3. Banik, S., et al.: GIFT-COFB. Cryptology ePrint Archive, Report 2020/738 (2020). https://eprint.iacr.org/2020/738

  4. Bao, Z., Guo, J., Wang, L.: Functional graphs and their applications in generic attacks on iterated hash constructions. IACR Trans. Symm. Cryptol. 2018(1), 201–253 (2018). https://doi.org/10.13154/tosc.v2018.i1.201-253

  5. Beierle, C., et al.: Lightweight AEAD and hashing using the Sparkle permutation family. IACR Trans. Symm. Cryptol. 2020(S1), 208–261 (2020). https://doi.org/10.13154/tosc.v2020.iS1.208-261

  6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability of the sponge construction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 181–197. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_11

    Chapter  Google Scholar 

  7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge: single-pass authenticated encryption and other applications. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28496-0_19

    Chapter  Google Scholar 

  8. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge functions (2007). https://keccak.team/files/SpongeFunctions.pdf

  9. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Cryptographic sponge functions (2011). https://keccak.team/files/CSF-0.1.pdf

  10. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Permutation-based encryption, authentication and authenticated encryption (2012). http://www.hyperelliptic.org/djb/diac/record.pdf

  11. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V., Keer, R.V.: Ketje v1. Submission to Caesar competition (2014). http://competitions.cr.yp.to/round1/ketjev1.pdf

  12. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V., Keer, R.V.: Ketje v2. Round 3 candidate for the Caesar competition (2016). http://competitions.cr.yp.to/round3/ketjev2.pdf

  13. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V., Keer, R.V.: Keyak v2. Submission to the Caesar competition (2016). https://competitions.cr.yp.to/round3/keyakv22.pdf

  14. Brent, R.P.: An improved monte carlo factorization algorithm. In: BIT Numerical Mathematics, Berlin, Heidelberg, p. 176–184 (1980). https://doi.org/10.1007/BF01933190

  15. Chaigneau, C., Fuhr, T., Gilbert, H., Jean, J., Reinhard, J.-R.: Cryptanalysis of NORX v2.0. J. Cryptol. 32(4), 1423–1447 (2018). https://doi.org/10.1007/s00145-018-9297-9

    Article  MathSciNet  MATH  Google Scholar 

  16. Chakraborti, A., Datta, N., Nandi, M., Yasuda, K.: Beetle family of lightweight and secure authenticated encryption ciphers. IACR Trans. Cryptogr. Hardware Embed. Syst. 2018(2), 218–241 (2018). https://doi.org/10.13154/tches.v2018.i2.218-241, https://tches.iacr.org/index.php/TCHES/article/view/881

  17. Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M.: Blockcipher-based authenticated encryption: how small can we go? In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 277–298. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_14

    Chapter  Google Scholar 

  18. Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.: Xoodyak, a lightweight cryptographic scheme. IACR Trans. Symm. Cryptol. 2020(S1), 60–87 (2020). https://doi.org/10.13154/tosc.v2020.iS1.60-87

  19. Daemen, J., Massolino, P.M.C., Mehrdad, A., Rotella, Y.: The subterranean 2.0 cipher suite. IACR Trans. Symm. Cryptol. 2020(S1), 262–294 (2020). https://doi.org/10.13154/tosc.v2020.iS1.262-294

  20. Daemen, J., Mennink, B., Van Assche, G.: Full-state keyed duplex with built-in multi-user support. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 606–637. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_21

    Chapter  MATH  Google Scholar 

  21. DeLaurentis, J.M.: Components and cycles of a random function. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 231–242. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2_21

    Chapter  Google Scholar 

  22. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2: lightweight authenticated encryption and hashing. J. Cryptol. 34(3), 1–42 (2021). https://doi.org/10.1007/s00145-021-09398-9

    Article  MathSciNet  MATH  Google Scholar 

  23. Flajolet, P., Odlyzko, A.M.: Random mapping statistics. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 329–354. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_34

    Chapter  Google Scholar 

  24. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009). http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521898065

  25. Harris, B.: Probability distributions related to random mappings. Ann. Math. Stat. 31(4), 1045–1062 (1960). https://doi.org/10.1214/aoms/1177705677

  26. Joux, A.: Algorithmic Cryptanalysis. Chapman and Hall/CRC, Boca Raton (2009). https://doi.org/10.1201/9781420070033

    Book  MATH  Google Scholar 

  27. Jovanovic, P., Luykx, A., Mennink, B.: Beyond 2c/2 security in sponge-based authenticated encryption modes. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 85–104. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_5

    Chapter  MATH  Google Scholar 

  28. Jovanovic, P., Luykx, A., Mennink, B., Sasaki, Yu., Yasuda, K.: Beyond conventional security in sponge-based authenticated encryption modes. J. Cryptol. 32(3), 895–940 (2018). https://doi.org/10.1007/s00145-018-9299-7

    Article  MathSciNet  MATH  Google Scholar 

  29. Leurent, G., Peyrin, T., Wang, L.: New generic attacks against hash-based MACs. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 1–20. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_1

    Chapter  Google Scholar 

  30. Mennink, B., Reyhanitabar, R., Vizár, D.: Security of full-state keyed sponge and duplex: applications to authenticated encryption. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 465–489. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_19

    Chapter  Google Scholar 

  31. Moon, J.W.: Counting Labelled Trees. Canadian Mathematical Congress 1970, William Clowes and Sons (1970)

    Google Scholar 

  32. Peyrin, T., Sasaki, Yu., Wang, L.: Generic related-key attacks for HMAC. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 580–597. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_35

    Chapter  Google Scholar 

  33. Peyrin, T., Wang, L.: Generic universal forgery attack on iterative hash-based MACs. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 147–164. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_9

    Chapter  Google Scholar 

  34. Zhang, W., et al.: KNOT. Round 2 candidate for the NIST Lightweight Cryptography project (2019). https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/knot-spec-round.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachelle Heim Boissier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gilbert, H., Heim Boissier, R., Khati, L., Rotella, Y. (2023). Generic Attack on Duplex-Based AEAD Modes Using Random Function Statistics. In: Hazay, C., Stam, M. (eds) Advances in Cryptology – EUROCRYPT 2023. EUROCRYPT 2023. Lecture Notes in Computer Science, vol 14007. Springer, Cham. https://doi.org/10.1007/978-3-031-30634-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30634-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30633-4

  • Online ISBN: 978-3-031-30634-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics