Quantum Annealing to Solve the Unrelated Parallel Machine Scheduling Problem | SpringerLink
Skip to main content

Quantum Annealing to Solve the Unrelated Parallel Machine Scheduling Problem

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13827))

  • 675 Accesses

Abstract

Quantum computing has emerged in recent years as an alternative to classical computing, which could improve the latter in solving some types of problems. One of the quantum programming models, Adiabatic Quantum Computing, has been successfully used to solve problems such as graph partitioning, traffic routing and task scheduling. Specifically, in this paper we focus on the scheduling on unrelated parallel machines problem. It is a workload-balancing problem where the processing time of any procedure executed on any of the available processing elements is known. Here, the problem is expressed as Quadratic Unconstrained Binary Optimisation, which can be subsequently solved using quantum annealers. The quantum nonlinear programming framework discussed in this work consists of three steps: quadratic approximation of cost function, binary representation of parameter space, and solving the resulting Quadratic Unconstrained Binary Optimisation. One of the novelties in tackling this problem has been to compact the model bearing in mind the repetitions of each task, to make it possible to solve larger scheduling problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ocean SDK demos. https://github.com/dwavesystems/demos

  2. Bliek, C., Bonami, P., Lodi, A.: Solving mixed-integer quadratic programming problems with IBM-CPLEX: a progress report. In: Proceedings of the Twenty-Sixth RAMP Symposium, pp. 16–17 (2014)

    Google Scholar 

  3. Carugno, C., Ferrari Dacrema, M., Cremonesi, P.: Evaluating the job shop scheduling problem on a D-Wave quantum annealer. Sci. Rep. 12(1), 1–11 (2022)

    Article  Google Scholar 

  4. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL. A Modeling Language for Mathematical Programming. Thomson (2003)

    Google Scholar 

  5. Gehrke, J.C., Jansen, K., Kraft, S.E.J., Schikowski, J.: A PTAS for scheduling unrelated machines of few different types. In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM 2016. LNCS, vol. 9587, pp. 290–301. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49192-8_24

    Chapter  MATH  Google Scholar 

  6. Glover, F., Kochenberger, G., Hennig, R., Du, Y.: Quantum bridge analytics I: a tutorial on formulating and using QUBO models. Ann. Oper. Res. 314, 141–183 (2022). https://doi.org/10.1007/s10479-022-04634-2

    Article  MathSciNet  MATH  Google Scholar 

  7. Grant, E.K., Humble, T.S.: Adiabatic quantum computing and quantum annealing. Oxford Research Encyclopedia of Physics, July 2020

    Google Scholar 

  8. Kochenberger, G., et al.: The unconstrained binary quadratic programming problem: a survey. J. Comb. Optim. 28(1), 58–81 (2014). https://doi.org/10.1007/s10878-014-9734-0

    Article  MathSciNet  MATH  Google Scholar 

  9. Koshikawa, A.S., Ohzeki, M., Kadowaki, T., Tanaka, K.: Benchmark test of black-box optimization using D-Wave quantum annealer. J. Phys. Soc. Jpn. 90(6), 064001 (2021)

    Article  Google Scholar 

  10. Ku, W.Y., Beck, J.C.: Mixed integer programming models for job shop scheduling: a computational analysis. Comput. Oper. Res. 73, 165–173 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lewis, M., Alidaee, B., Kochenberger, G.: Using xQx to model and solve the uncapacitated task allocation problem. Oper. Res. Lett. 33(2), 176–182 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2, 5 (2014)

    Article  Google Scholar 

  13. Mohseni, N., McMahon, P.L., Byrnes, T.: Ising machines as hardware solvers of combinatorial optimization problems. Nat. Rev. Phys. 4(6), 363–379 (2022). https://doi.org/10.1038/s42254-022-00440-8

    Article  Google Scholar 

  14. Orts, F., Ortega, G., Puertas, A.M., García, I., Garzón, E.M.: On solving the unrelated parallel machine scheduling problem: active microrheology as a case study. J. Supercomput. 76(11), 8494–8509 (2020). https://doi.org/10.1007/s11227-019-03121-z

    Article  Google Scholar 

  15. Phillipson, F., Bhatia, H.S.: Portfolio optimisation using the D-Wave quantum annealer. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12747, pp. 45–59. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77980-1_4

    Chapter  Google Scholar 

  16. Sels, V., Coelho, J., Dias, A., Vanhoucke, M.: Hybrid tabu search and a truncated branch-and-bound for the unrelated parallel machine scheduling problem. Comput. Oper. Res. 53, 107–117 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, T., Liu, Z., Chen, Y., Xu, Y., Dai, X.: Load balancing task scheduling based on genetic algorithm in cloud computing. In: Proceedings of the 2014 IEEE 12th International Conference on Dependable, Autonomic and Secure Computing, DASC 2014, pp. 146–152. IEEE Computer Society (2014)

    Google Scholar 

  18. Willsch, D., et al.: Benchmarking advantage and D-Wave 2000Q quantum annealers with exact cover problems. Quantum Inf. Process. 21(4), 1–22 (2022). https://doi.org/10.1007/s11128-022-03476-y

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by the projects: RTI2018-095993-B-I00 and PID2021-123278OB-I00 (funded by MCIN/AEI/10.13039/501 100011033/FEDER “A way to make Europe”); P20_00748, UAL2020-TIC-A2101, UAL18-FQM-B038-A and UAL18-TIC-A020-B (funded by Junta de Andalucía and the European Regional Development Fund, ERDF).

Authors would also like to thank Professor Dr. Elías F. Combarro, from the Informatics Department, University of Oviedo, Spain, because this work has been possible thanks to the contents of his interesting lectures about Quantum Computing at Almería University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Orts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Orts, F., Puertas, A.M., Garzón, E.M., Ortega, G. (2023). Quantum Annealing to Solve the Unrelated Parallel Machine Scheduling Problem. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2022. Lecture Notes in Computer Science, vol 13827. Springer, Cham. https://doi.org/10.1007/978-3-031-30445-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30445-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30444-6

  • Online ISBN: 978-3-031-30445-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics