An Adaptive Convolution Auto-encoder Based on Spiking Neurons | SpringerLink
Skip to main content

An Adaptive Convolution Auto-encoder Based on Spiking Neurons

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13624))

Included in the following conference series:

  • 880 Accesses

Abstract

Neural coding is one of the central questions in neuroscience for converting visual information into spike patterns. However, the existing encoding techniques require a preset time window and lack effective learning. In order to overcome these two problems, we design an adaptive convolutional auto-encoder based on spiking neurons in this paper. We first exploit the spike pixel mapping decoding approach to find the optimal value of the time window automatically. Next, we design a deep convolutional neural network to adapt the learning parameters by reconstruction errors to realize the spike encoding process. Then we can naturally get coding pre-training parameters for unifying the convolutional spike coding layer with back-end deep spiking neural networks (SNNs) for recognition tasks. Simulation results demonstrate that the proposed method can achieve better performance compared with other encoding methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Azarfar, A., Calcini, N., Huang, C., et al.: Neural coding: a single neuron’s perspective. Neurosci. Biobehav. Rev. 94, 238–247 (2018)

    Article  Google Scholar 

  2. Van Rullen, R., Thorpe, S.J.: Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex. Neural Comput. 13(6), 1255–1283 (2001)

    Article  MATH  Google Scholar 

  3. VanRullen, R., Guyonneau, R., Thorpe, S.J.: Spike times make sense. Trends Neurosci. 28(1), 1–4 (2005)

    Article  Google Scholar 

  4. Panzeri, S., Brunel, N., Logothetis, N.K., et al.: Sensory neural codes using multiplexed temporal scales. Trends Neurosci. 33(3), 111–120 (2010)

    Article  Google Scholar 

  5. Parthasarathy, N., Batty, E., Falcon, W., et al.: Neural networks for efficient Bayesian decoding of natural images from retinal neurons. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  6. Zhang, Y., Jia, S., Zheng, Y., et al.: Reconstruction of natural visual scenes from neural spikes with deep neural networks. Neural Netw. 125, 19–30 (2020)

    Article  Google Scholar 

  7. Pfeiffer, M., Pfeil, T.: Deep learning with spiking neurons: opportunities and challenges. Front. Neurosci. 12, 774 (2018)

    Article  Google Scholar 

  8. Zheng, H., Wu, Y., Deng, L., et al.: Going deeper with directly-trained larger spiking neural networks. arXiv preprint, arXiv:2011.05280 (2020)

  9. Li, Y., Guo, Y., Zhang, S., et al.: Differentiable spike: rethinking gradient-descent for training spiking neural networks. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  10. Orhan, E.: The leaky integrate-and-fire neuron model, no. 3, pp. 1–6 (2012)

    Google Scholar 

  11. LeCun, Y.: The MNIST database of handwritten digits (1998). http://yann.lecun.com/exdb/mnist/

  12. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  13. Huang, G., Liu, Z., Van Der Maaten, L., et al.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  14. Rueckauer, B., Lungu, I.A., Hu, Y.H., et al.: Conversion of continuous-valued deep networks to efficient event-driven networks for image classification. Front. Neurosci. 11, 682 (2017)

    Article  Google Scholar 

  15. Sengupta, A., Ye, Y., Wang, R., et al.: Going deeper in spiking neural networks: VGG and residual architectures. Front. Neurosci. 13, 95 (2019)

    Article  Google Scholar 

  16. Lee, C., Sarwar, S.S., Panda, P., et al.: Enabling spike-based backpropagation for training deep neural network architectures. Front. Neurosci. 119 (2020)

    Google Scholar 

  17. Jin, Y., Zhang, W., Li, P.: Hybrid macro/micro level backpropagation for training deep spiking neural networks. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  18. Severa, W., Vineyard, C.M., Dellana, R., et al.: Training deep neural networks for binary communication with the whetstone method. Nat. Mach. Intell. 1(2), 86–94 (2019)

    Article  Google Scholar 

  19. Gu, P., Xiao, R., Pan, G., et al.: STCA: spatio-temporal credit assignment with delayed feedback in deep spiking neural networks. In: IJCAI, pp. 1366–1372 (2019)

    Google Scholar 

  20. Wu, Y.J., Deng, L., Li, G.Q., et al.: Direct training for spiking neural networks: faster, larger, better. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 1311–1318 (2019)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China NSAF under Grant No. U2030204.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, C., Jiang, J., Jiang, R., Yan, R. (2023). An Adaptive Convolution Auto-encoder Based on Spiking Neurons. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13624. Springer, Cham. https://doi.org/10.1007/978-3-031-30108-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30108-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30107-0

  • Online ISBN: 978-3-031-30108-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics