Human Violence Recognition in Video Surveillance in Real-Time | SpringerLink
Skip to main content

Human Violence Recognition in Video Surveillance in Real-Time

  • Conference paper
  • First Online:
Advances in Information and Communication (FICC 2023)

Abstract

The automatic detection of human violence in video surveillance is an area of great attention due to its application in security, monitoring, and prevention systems. Detecting violence in real time could prevent criminal acts and even save lives. There are many investigations and proposals for the detection of violence in video surveillance; however, most of them focus on effectiveness and not on efficiency. They focus on overcoming the accuracy results of other proposals and not on their applicability in a real scenario and real-time. In this work, we propose an efficient model for recognizing human violence in real-time, based on deep learning, composed of two modules, a spatial attention module (SA) and a temporal attention module (TA). SA extracts spatial features and regions of interest by frame difference of two consecutive frames and morphological dilation. TA extracts temporal features by averaging all three RGB channels in a single channel to have three frames as input to a 2D CNN backbone. The proposal was evaluated in efficiency, accuracy, and real-time. The results showed that our work has the best efficiency compared to other proposals. Accuracy was very close to the result of the best proposal, and latency was very close to real-time. Therefore our model can be applied in real scenarios and in real-time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 25167
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 31459
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gao, Y., Liu, H., Sun, X., Wang, C., Liu, Y.: Violence detection using oriented violent flows. Image Vis. Comput. 48–49(2015), 37–41 (2016). https://doi.org/10.1016/j.imavis.2016.01.006

    Article  Google Scholar 

  2. Deniz, O., Serrano, I., Bueno, G., Kim, T.K.: Fast violence detection in video. In: VISAPP 2014 - Proceedings 9th International Conference on Computer Vision Theory Applications, vol. 2, December 2014, pp. 478–485 (2014). https://doi.org/10.5220/0004695104780485

  3. Bilinski, P.: Human violence recognition and detection in surveillance videos, pp. 30–36 (2016). https://doi.org/10.1109/AVSS.2016.7738019

  4. Zhang, T., Jia, W., He, X., Yang, J.: Discriminative dictionary learning with motion weber local descriptor for violence detection. IEEE Trans. Circuits Syst. Video Technol. 27(3), 696–709 (2017)

    Article  Google Scholar 

  5. Deb, T., Arman, A., Firoze, A.: Machine cognition of violence in videos using novel outlier-resistant VLAD. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 989–994 (2018)

    Google Scholar 

  6. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems, vol. 1, no. January, pp. 568–576 (2014)

    Google Scholar 

  7. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016, Decemeber 2016, pp. 1933–1941 (2016). https://doi.org/10.1109/CVPR.2016.213

  8. Zhang, B., Wang, L., Wang, Z., Qiao, Y., Wang, H.: Real-time action recognition with deeply transferred motion vector CNNs. IEEE Trans. Image Process. 27(5), 2326–2339 (2018). https://doi.org/10.1109/TIP.2018.2791180

    Article  MathSciNet  Google Scholar 

  9. Wang, L., Xiong, Y., Wang, Z., Qiao, Yu., Lin, D., Tang, X., Van Gool, L.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

    Chapter  Google Scholar 

  10. Zhu, Y., Lan, Z., Newsam, S., Hauptmann, A.: Hidden two-stream convolutional networks for action recognition. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 363–378. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_23

    Chapter  Google Scholar 

  11. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221–231 (2013). https://doi.org/10.1109/TPAMI.2012.59

    Article  Google Scholar 

  12. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2015, pp. 4489–4497 (2015). https://doi.org/10.1109/ICCV.2015.510

  13. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3D residual networks. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2017-October, pp. 5534–5542 (2017). https://doi.org/10.1109/ICCV.2017.590

  14. Carreira, J., Zisserman, A.: Quo Vadis, action recognition? A new model and the kinetics dataset. In: Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-January, pp. 4724–4733 (2017). https://doi.org/10.1109/CVPR.2017.502

  15. Dong, Z., Qin, J., Wang, Y.: Multi-stream deep networks for person to person violence detection in videos. In: Chinese Conference on Pattern Recognition, pp. 517–531 (2016)

    Google Scholar 

  16. Zhou, P., Ding, Q., Luo, H., Hou, X.: Violent interaction detection in video based on deep learning. J. Phys: Conf. Ser. 844(1), 12044 (2017)

    Google Scholar 

  17. Serrano, I., Deniz, O., Espinosa-Aranda, J.L., Bueno, G.: Fight recognition in video using Hough forests and 2D convolutional neural network. IEEE Trans. Image Process. 27(10), 4787–4797 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sudhakaran, S., Lanz, O.: Learning to detect violent videos using convolutional long short-term memory. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6 (2017)

    Google Scholar 

  19. Hanson, A., PNVR, K., Krishnagopal, S., Davis, L.: Bidirectional convolutional LSTM for the detection of violence in videos. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11130, pp. 280–295. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11012-3_24

    Chapter  Google Scholar 

  20. Ulutan, O., Rallapalli, S., Srivatsa, M., Torres, C., Manjunath, B.S.: Actor conditioned attention maps for video action detection. In: Proceedings of IEEE Winter Conference on Applcations of Computer Vision (WACV), pp. 516–525 (2020)

    Google Scholar 

  21. Meng, L., et al.: Interpretable spatio-temporal attention for video action recognition. In: Proceedings of IEEE/CVF International Conference Computer Vision Workshop (ICCVW), October 2019, pp. 1513–1522 (2019)

    Google Scholar 

  22. Kang, M.S., Park, R.H., Park, H.M.: Efficient spatio-temporal modeling methods for real-time violence recognition. IEEE Access 9, 76270–76285 (2021)

    Article  Google Scholar 

  23. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of IEEE/CVF Conference on Computer Vision Pattern Recognition, June 2018, pp. 6450–6459 (2018)

    Google Scholar 

  24. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3D residual networks. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), October 2017, pp. 5534–5542 (2017)

    Google Scholar 

  25. Hanson, A., PNVR, K., Krishnagopal, S., Davis, L.: Bidirectional convolutional LSTM for the detection of violence in videos. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11130, pp. 280–295. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11012-3_24

    Chapter  Google Scholar 

  26. Li, J., Jiang, X., Sun, T., Xu, K.: Efficient violence detection using 3D convolutional neural networks. In: Proceedings of 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), September 2019, pp. 1–8 (2018)

    Google Scholar 

  27. Soliman, M.M., et al.: Violence recognition from videos using deep learning techniques. In: Proceedings of 9th International Conference on Intelligent Computing and Information System (ICICIS), December 2019, pp. 80–85 (2019)

    Google Scholar 

  28. Akti, S., Tataroglu, G.A., Ekenel, H.K.: Vision-based fight detection from surveillance cameras. In: Proceedings of 9th International Conference on Image Process. Theory, Tools Application (IPTA), November 2019, pp. 1–6 (2019)

    Google Scholar 

  29. Traoré, A., Akhloufi, M.A.: 2D bidirectional gated recurrent unit convolutional neural networks for end-to-end violence detection in videos. In: Campilho, A., Karray, F., Wang, Z. (eds.) ICIAR 2020. LNCS, vol. 12131, pp. 152–160. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50347-5_14

    Chapter  Google Scholar 

  30. Huillcen Baca, H.A., Gutierrez Caceres, J.C., de Luz Palomino Valdivia, F.: Efficiency in human actions recognition in video surveillance using 3D CNN and DenseNet. In: Arai, K. (eds.) Advances in Information and Communication. FICC 2022. LNNS, vol. 438, pp. 342–355. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98012-2_26

  31. Cheng, M., Cai, K., Li, M.: RWF-2000: an open large scale video database for violence detection. arXiv preprint arXiv:1911.05913 (2019)

  32. Bermejo Nievas, E., Deniz Suarez, O., Bueno García, G., Sukthankar, R.: Violence detection in video using computer vision techniques. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011. LNCS, vol. 6855, pp. 332–339. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23678-5_39

    Chapter  Google Scholar 

  33. Su, Y., Lin, G., Zhu, J., Wu, Q.: Human interaction learning on 3D skeleton point clouds for video violence recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 74–90. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_5

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herwin Alayn Huillcen Baca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huillcen Baca, H.A., de Luz Palomino Valdivia, F., Solis, I.S., Cruz, M.A., Caceres, J.C.G. (2023). Human Violence Recognition in Video Surveillance in Real-Time. In: Arai, K. (eds) Advances in Information and Communication. FICC 2023. Lecture Notes in Networks and Systems, vol 652. Springer, Cham. https://doi.org/10.1007/978-3-031-28073-3_52

Download citation

Publish with us

Policies and ethics