DNA Genome Classification with Machine Learning and Image Descriptors | SpringerLink
Skip to main content

DNA Genome Classification with Machine Learning and Image Descriptors

  • Conference paper
  • First Online:
Advances in Information and Communication (FICC 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 652))

Included in the following conference series:

  • 796 Accesses

Abstract

Sequence alignment is the most used method in Bioinformatics. Nevertheless, it is slow in time processing. For that reason, there are several methods not based on alignment to compare sequences. In this work, we analyzed Kameris and Castor, two alignment-free methods for DNA genome classification; we compared them against the most popular CNN networks: VGG16, VGG19, Resnet-50, and Inception. Also, we compared them with image descriptor methods like First-order Statistics(FOS), Gray-level Co-occurrence matrix (GLCM), Local Binary Pattern (LBP), and Multi-resolution Local Binary Pattern(MLBP), and classifiers like: Support Vector Machine (SVM), Random Forest (RF) and k-nearest neighbors (KNN). In this comparison, we concluded that FOS, GLCM, LBP, and MLBP, all with SVM got the best results in f1-score, followed by Castor and Kameris and finally by CNNs. Furthermore, Castor got a minor processing time. Finally, according to experiments, 5-mer (used by Kameris and Castor) and 6-mer outperformed 7-mer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 25167
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 31459
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abd-Alhalem, S.M., et al.: DNA sequences classification with deep learning: a survey. Menoufia J. Electron. Eng. Res. 30(1), 41–51 (2021)

    Article  Google Scholar 

  2. Almeida, J.S., Carrico, J.A., Maretzek, A., Noble, P.A., Fletcher, M.: Analysis of genomic sequences by chaos game representation. Bioinformatics 17(5), 429–437 (2001)

    Article  Google Scholar 

  3. Bakheet, S., Al-Hamadi, A.: Automatic detection of Covid-19 using pruned GLCM-based texture features and LDCRF classification. Comput. Biol. Med. 137, 104781 (2021)

    Article  Google Scholar 

  4. Barburiceanu, S., Terebes, R., Meza, S.: 3D texture feature extraction and classification using GLCM and LBP-based descriptors. Appl. Sci. 11(5), 2332 (2021)

    Article  Google Scholar 

  5. Campagna, D., et al.: Rap: a new computer program for de novo identification of repeated sequences in whole genomes. Bioinformatics 21(5), 582–588 (2005)

    Article  Google Scholar 

  6. Chen, W., Liao, B., Li, W.: Use of image texture analysis to find DNA sequence similarities. J. Theor. Biol. 455, 1–6 (2018)

    Article  MATH  Google Scholar 

  7. Choi, J.Y., Kim, D.H., Choi, S.H., Ro, Y.M.: Multiresolution local binary pattern texture analysis for false positive reduction in computerized detection of breast masses on mammograms. In: Medical Imaging 2012: Computer-Aided Diagnosis, vol. 8315, pp. 676–682. SPIE (2012)

    Google Scholar 

  8. Riccardo Concu and MNDS Cordeiro: Alignment-free method to predict enzyme classes and subclasses. Int. J. Molec. Sci. 20(21), 5389 (2019)

    Article  Google Scholar 

  9. Cores, F., Guirado, F., Lerida, J.L.: High throughput blast algorithm using spark and cassandra. J. Supercomput. 77, 1879–1896 (2021)

    Article  Google Scholar 

  10. Delibaş, E., Arslan, A.: DNA sequence similarity analysis using image texture analysis based on first-order statistics. J. Molec. Graph. Model. 99, 107603 (2020)

    Article  Google Scholar 

  11. Deschavanne, P.J., Giron, A., Vilain, J., Fagot, G., Fertil, B.: Genomic signature: characterization and classification of species assessed by chaos game representation of sequences. Molec. Biol. Evol. 16(10), 1391–1399 (1999)

    Article  Google Scholar 

  12. Dogan, B.: An alignment-free method for bulk comparison of protein sequences from different species. Balkan J. Electr. Comput. Eng. 7(4), 405–416 (2019)

    Article  Google Scholar 

  13. Fabijańska, A., Grabowski, S.: Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019)

    Article  Google Scholar 

  14. Gao, Y., Li, T., Luo, L.: Phylogenetic study of 2019-ncov by using alignment-free method. arXiv preprint arXiv:2003.01324 (2020)

  15. Gollery, M.: Bioinformatics: sequence and genome analysis. Clin. Chem. 51(11), 2219–2220 (2005)

    Article  Google Scholar 

  16. Gunasekaran, H., Ramalakshmi, K., Arokiaraj, A.R.M., Kanmani, S.D., Venkatesan, C., Dhas, C.S.G.: Analysis of DNA sequence classification using CNN and hybrid models. Comput. Math. Methods Med. 2021 (2021)

    Google Scholar 

  17. Hammad, M.S., Ghoneim, V.F., Mabrouk, M.S.: Detection of Covid-19 using genomic image processing techniques. In: 2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES), pp. 83–86. IEEE (2021)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  19. He, L., Dong, R., He, R.L., Yau, S.S.-T.: A novel alignment-free method for hiv-1 subtype classification. Infect. Genet. Evol. 77, 104080 (2020)

    Article  Google Scholar 

  20. Kaur, N., Nazir, N., et al.: A review of local binary pattern based texture feature extraction. In: 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO), pp. 1–4. IEEE (2021)

    Google Scholar 

  21. Keogh, E., Wei, L., Xi, X., Lonardi, S., Shieh, J., Sirowy, S. Intelligent icons: integrating lite-weight data mining and visualization into gui operating systems. In: Sixth International Conference on Data Mining (ICDM 2006), pp. 912–916. IEEE (2006)

    Google Scholar 

  22. Kola, D.G.R., Samayamantula, S.K.: A novel approach for facial expression recognition using local binary pattern with adaptive window. Multimedia Tools Appl. 80(2), 2243–2262 (2021)

    Article  Google Scholar 

  23. Kouchaki, S., Tapinos, A., Robertson, D.L.: A signal processing method for alignment-free metagenomic binning: multi-resolution genomic binary patterns. Sci. Rep. 9(1), 1–10 (2019)

    Article  Google Scholar 

  24. Kumar, N., Lolla, V.N., Keogh, E., Lonardi, S., Ratanamahatana, C.A., Wei, L.: Time-series bitmaps: a practical visualization tool for working with large time series databases. In: Proceedings of the 2005 SIAM International Conference on Data Mining, pp. 531–535. SIAM (2005)

    Google Scholar 

  25. Lebatteux, D., Remita, A.M., Diallo, A.B.: Toward an alignment-free method for feature extraction and accurate classification of viral sequences. J. Comput. Biol. 26(6), 519–535 (2019)

    Article  Google Scholar 

  26. Lee, B., Smith, D.K., Guan, Y.: Alignment free sequence comparison methods and reservoir host prediction. Bioinformatics 37, 3337–3342 (2021)

    Article  Google Scholar 

  27. Leinonen, M., Salmela, L.: Extraction of long k-mers using spaced seeds. arXiv preprint arXiv:2010.11592 (2020)

  28. Li, Y., Li, L.-P., Wang, L., Chang-Qing, Yu., Wang, Z., You, Z.-H.: An ensemble classifier to predict protein-protein interactions by combining pssm-based evolutionary information with local binary pattern model. Int. J. Molec. Sci. 20(14), 3511 (2019)

    Article  Google Scholar 

  29. Lichtblau, D.: Alignment-free genomic sequence comparison using fcgr and signal processing. BMC Bioinf. 20(1), 1–17 (2019)

    Article  MathSciNet  Google Scholar 

  30. Liu, Z., Gao, J., Shen, Z., Zhao, F.: Design and implementation of parallelization of blast algorithm based on spark. DEStech Trans. Comput. Sci. Eng. (IECE) (2018)

    Google Scholar 

  31. Arceda, V.E.M.: An analysis of k-mer frequency features with svm and cnn for viral subtyping classification. J. Comput. Sci. Technol. 20 (2020)

    Google Scholar 

  32. Mahmoud, M.A.B., Guo, P.: DNA sequence classification based on mlp with pilae algorithm. Soft Comput. 25(5), 4003–4014 (2021)

    Article  Google Scholar 

  33. Mohan, N., Varshney, N.: Facial expression recognition using improved local binary pattern and min-max similarity with nearest neighbor algorithm. In: Tiwari, S., Trivedi, M.C., Mishra, K.K., Misra, A.K., Kumar, K.K., Suryani, E. (eds.) Smart Innovations in Communication and Computational Sciences. AISC, vol. 1168, pp. 309–319. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5345-5_28

    Chapter  Google Scholar 

  34. Öztürk, Ş, Akdemir, B.: Application of feature extraction and classification methods for histopathological image using glcm, lbp, lbglcm, glrlm and sfta. Procedia Comput. Sci. 132, 40–46 (2018)

    Article  Google Scholar 

  35. Panthakkan, A., Anzar, S.M., Al Mansoori, S., Al Ahmad, H.: Accurate prediction of covid-19 (+) using ai deep vgg16 model. In: 2020 3rd International Conference on Signal Processing and Information Security (ICSPIS), pp. 1–4. IEEE (2020)

    Google Scholar 

  36. Prakasa, E.: Texture feature extraction by using local binary pattern. INKOM J. 9(2), 45–48 (2016)

    Article  MathSciNet  Google Scholar 

  37. Pratas, D., Silva, R.M., Pinho, A.J., Ferreira, P.J.S.C.: An alignment-free method to find and visualise rearrangements between pairs of dna sequences. Sci. Rep. 5(1), 1–9 (2015)

    Article  Google Scholar 

  38. Pratiwi, M., Harefa, J., Nanda, S., et al.: Mammograms classification using gray-level co-occurrence matrix and radial basis function neural network. Procedia Comput. Sci. 59, 83–91 (2015)

    Article  Google Scholar 

  39. Randhawa, G.S., Hill, K.A., Kari, L.: Ml-dsp: machine learning with digital signal processing for ultrafast, accurate, and scalable genome classification at all taxonomic levels. BMC Genom. 20(1), 1–21 (2019)

    Article  Google Scholar 

  40. Ranganathan, S., Nakai, K., Schonbach, C.: Encyclopedia of Bioinformatics and Computational Biology. ABC of Bioinformatics. Elsevier (2018)

    Google Scholar 

  41. Ren, J., et al.: Identifying viruses from metagenomic data using deep learning. Quant. Biol. 8, 1–14 (2020)

    Article  Google Scholar 

  42. Rosenberg, M.S.: Sequence Alignment: Methods, Models, Concepts, and Strategies. University of California Press (2009)

    Google Scholar 

  43. Ruichek, Y., et al.: Attractive-and-repulsive center-symmetric local binary patterns for texture classification. Eng. Appl. Artif. Intell. 78, 158–172 (2019)

    Article  Google Scholar 

  44. Bhavya, S.V., Narasimha, G.R., Ramya, M., Sujana, Y.S., Anuradha, T.: Classification of skin cancer images using tensorflow and inception v3. Int. J. Eng. Technol. 7, 717–721 (2018)

    Article  Google Scholar 

  45. Santamaría, L.A., Zuñiga, S., Pineda, I.H., Somodevilla, M.J., Rossainz, M.: Reconocimiento de genes en secuencias de adn por medio de imágenes. DNA sequence recognition using image representation. Res. Comput. Sci. 148, 105–114 (2019)

    Google Scholar 

  46. Shanan, N.A.A., Lafta, H.A., Alrashid, S.Z.: Using alignment-free methods as preprocessing stage to classification whole genomes. Int. J. Nonlinear Anal. Appl. 12(2), 1531–1539 (2021)

    Google Scholar 

  47. Sharifnejad, M., Shahbahrami, A., Akoushideh, A., Hassanpour, R.Z.: Facial expression recognition using a combination of enhanced local binary pattern and pyramid histogram of oriented gradients features extraction. IET Image Process. 15(2), 468–478 (2021)

    Article  Google Scholar 

  48. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  49. Singh, P., Verma, P., Singh, N.: Offline signature verification: an application of glcm features in machine learning. Ann. Data Sci. 96, 1–13 (2021)

    Google Scholar 

  50. Solis-Reyes, S., Avino, M., Poon, A., Kari, L.: An open-source k-mer based machine learning tool for fast and accurate subtyping of hiv-1 genomes. PloS One 13(11), e0206409 (2018)

    Article  Google Scholar 

  51. Sultana, M., Bhatti, M.N.A., Javed, S., Jung, S.-K.: Local binary pattern variants-based adaptive texture features analysis for posed and nonposed facial expression recognition. J. Electron. Imaging 26(5), 053017 (2017)

    Article  Google Scholar 

  52. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  53. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  54. Tello-Mijares, S., Woo, L.: Computed tomography image processing analysis in covid-19 patient follow-up assessment. J. Healthcare Eng. 2021 (2021)

    Google Scholar 

  55. Vu, H.N., Nguyen, M.H., Pham, C.: Masked face recognition with convolutional neural networks and local binary patterns. Appl. Intell. 52(5), 5497–5512 (2022)

    Article  Google Scholar 

  56. Wang, H., Li, L., Zhou, C., Lin, H., Deng, D.: Spark-based parallelization of basic local alignment search tool. Int. J. Bioautom. 24(1), 87 (2020)

    Article  Google Scholar 

  57. Wood, D.E., Salzberg, S.L.: Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15(3), 1–12 (2014)

    Article  Google Scholar 

  58. Yang, F., Ying-Ying, X., Wang, S.-T., Shen, H.-B.: Image-based classification of protein subcellular location patterns in human reproductive tissue by ensemble learning global and local features. Neurocomputing 131, 113–123 (2014)

    Article  Google Scholar 

  59. Youssef, K., Feng, W.: Sparkleblast: scalable parallelization of blast sequence alignment using spark. In: 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID), pp. 539–548. IEEE (2020)

    Google Scholar 

  60. Zielezinski, A., Vinga, S., Almeida, J., Karlowski, W.M.: Alignment-free sequence comparison: benefits, applications, and tools. Genome Biol. 18(1), 1–17 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Prado Cussi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cussi, D.P., Machaca Arceda, V.E. (2023). DNA Genome Classification with Machine Learning and Image Descriptors. In: Arai, K. (eds) Advances in Information and Communication. FICC 2023. Lecture Notes in Networks and Systems, vol 652. Springer, Cham. https://doi.org/10.1007/978-3-031-28073-3_4

Download citation

Publish with us

Policies and ethics