Labelled Sequent Calculi for Conditional Logics: Conditional Excluded Middle and Conditional Modus Ponens Finally Together | SpringerLink
Skip to main content

Labelled Sequent Calculi for Conditional Logics: Conditional Excluded Middle and Conditional Modus Ponens Finally Together

  • Conference paper
  • First Online:
AIxIA 2022 – Advances in Artificial Intelligence (AIxIA 2022)

Abstract

We introduce labelled sequent calculi for Conditional Logics with a selection function semantics. Conditional Logics are a sort of generalization of multimodal logics where modalities are labelled by formulas of the same language. Recently, they received a renewed attention and have found several applications in knowledge representation and artificial intelligence. In a previous work, we have considered the basic system CK and extensions with well known conditions ID, MP, CS and CEM, with the exception of those admitting both conditions CEM and MP, obtaining labelled sequent calculi called SeqS. Here we provide calculi for the whole cube of the extensions of CK generated by the above axioms, including also those with both CEM and MP: the basic idea is that of replacing the rule dealing with CEM in SeqS, which performs a label substitutions in both its premises, by a new one that avoids such a substitution and adopts a conditional formula on the right-hand side of a sequent as its principal formula. We have also implemented the proposed calculi in Prolog following the “lean” methodology, then we have tested the performances of the new prover, called CondLean2022, and compared them with those of CondLean, an implementation of SeqS, on the common systems. The performances of CondLean2022 are promising and seem to be better than those of CondLean, witnessing that the proposed calculi also provide a more efficient theorem prover for Conditional Logics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7435
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9294
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alenda, R., Olivetti, N., Pozzato, G.L.: Nested sequent calculi for normal conditional logics. J. Log. Comput. 26(1), 7–50 (2016). https://doi.org/10.1093/logcom/ext034

    Article  MathSciNet  MATH  Google Scholar 

  2. Beckert, B., Posegga, J.: leanTAP: lean tableau-based deduction. J. Autom. Reason. 15(3), 339–358 (1995)

    Article  MATH  Google Scholar 

  3. Beckert, B., Posegga, J.: Logic programming as a basis for lean automated deduction. J. Log. Program. 28(3), 231–236 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burgess, J.P.: Quick completeness proofs for some logics of conditionals. Notre Dame J. Formal Log. 22, 76–84 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chellas, B.F.: Basic conditional logics. J. Philos. Log. 4, 133–153 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Delgrande, J.P.: A first-order conditional logic for prototypical properties. Artif. Intell. 33(1), 105–130 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fitting, M.: leanTAP revisited. J. Log. Comput. 8(1), 33–47 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Friedman, N., Halpern, J.Y.: Plausibility measures and default reasoning. J. ACM 48(4), 648–685 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gabbay, D.M., Giordano, L., Martelli, A., Olivetti, N., Sapino, M.L.: Conditional reasoning in logic programming. J. Log. Program. 44(1–3), 37–74 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Genovese, V., Giordano, L., Gliozzi, V., Pozzato, G.L.: Logics in access control: a conditional approach. J. Log. Comput. 24(4), 705–762 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Giordano, L., Gliozzi, V., Olivetti, N.: Iterated belief revision and conditional logic. Stud. Log. 70(1), 23–47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Giordano, L., Gliozzi, V., Olivetti, N.: Weak AGM postulates and strong Ramsey test: a logical formalization. Artif. Intell. 168(1–2), 1–37 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giordano, L., Schwind, C.: Conditional logic of actions and causation. Artif. Intell. 157(1–2), 239–279 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic tableaux for KLM preferential and cumulative logics. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 666–681. Springer, Heidelberg (2005). https://doi.org/10.1007/11591191_46

    Chapter  MATH  Google Scholar 

  15. Grahne, G.: Updates and counterfactuals. J. Log. Comput. 8(1), 87–117 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lewis, D.: Counterfactuals. Basil Blackwell Ltd. (1973)

    Google Scholar 

  18. Nute, D.: Topics in Conditional Logic. Reidel, Dordrecht (1980)

    Book  MATH  Google Scholar 

  19. Olivetti, N., Pozzato, G.L., Schwind, C.B.: A sequent calculus and a theorem prover for standard conditional logics. ACM Trans. Comput. Log. (ToCL) 8(4), 22-es (2007)

    Google Scholar 

  20. Olivetti, N., Pozzato, G.L.: CondLean: a theorem prover for conditional logics. In: Cialdea Mayer, M., Pirri, F. (eds.) TABLEAUX 2003. LNCS (LNAI), vol. 2796, pp. 264–270. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45206-5_23

    Chapter  Google Scholar 

  21. Olivetti, N., Pozzato, G.L.: CondLean 3.0: improving CondLean for stronger conditional logics. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 328–332. Springer, Heidelberg (2005). https://doi.org/10.1007/11554554_27

    Chapter  Google Scholar 

  22. Panic, N., Pozzato, G.L.: Efficient theorem proving for conditional logics with conditional excluded middle. In: Calegari, R., Ciatto, G., Omicini, A. (eds.) Proceedings of the 37th Italian Conference on Computational Logic, Bologna, Italy, 29 June–1 July 2022. CEUR Workshop Proceedings, vol. 3204, pp. 217–231. CEUR-WS.org (2022). https://ceur-ws.org/Vol-3204/paper_22.pdf

  23. Schwind, C.B.: Causality in action theories. Electron. Trans. Artif. Intell. (ETAI) 3(A), 27–50 (1999)

    MathSciNet  Google Scholar 

  24. Stalnaker, R.: A theory of conditionals. In: Rescher, N. (ed.) Studies in Logical Theory, pp. 98–112. Blackwell (1968)

    Google Scholar 

Download references

Acknowledgement

This work has been partially supported by the INdAM - GNCS Project cod. CUP_E55F22000270001 “LESLIE: LogichE non-claSsiche per tooL Intelligenti ed Explainable”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gian Luca Pozzato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Olivetti, N., Panic, N., Pozzato, G.L. (2023). Labelled Sequent Calculi for Conditional Logics: Conditional Excluded Middle and Conditional Modus Ponens Finally Together. In: Dovier, A., Montanari, A., Orlandini, A. (eds) AIxIA 2022 – Advances in Artificial Intelligence. AIxIA 2022. Lecture Notes in Computer Science(), vol 13796. Springer, Cham. https://doi.org/10.1007/978-3-031-27181-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27181-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27180-9

  • Online ISBN: 978-3-031-27181-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics