Abstract
Artificial intelligence (AI) still lacks human capabilities, like adaptability, generalizability, self-control, consistency, common sense, and causal reasoning. Humans achieve some of these capabilities by carefully combining their thinking “fast” and “slow”. In this work we define an AI architecture that embeds these two modalities, and we study the role of a “meta-cognitive” component, with the role of coordinating and combining them, in achieving higher quality decisions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ackerman, R., Thompson, V.A.: Meta-reasoning: Monitoring and control of thinking and reasoning. Trends Cogn. Sci. 21(8), 607–617 (2017)
Anthony, T., Tian, Z., Barber, D.: Thinking fast and slow with deep learning and tree search. In: Advances in Neural Information Processing Systems, pp. 5360–5370 (2017)
Balakrishnan, A., Bouneffouf, D., Mattei, N., Rossi, F.: Incorporating behavioral constraints in online AI systems. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI) (2019)
Bengio, Y.: The consciousness prior. arXiv preprint arXiv:1709.08568 (2017)
Booch, G., et al.: Thinking fast and slow in AI. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 15042–15046 (2021)
Carruthers, P.: Explicit nonconceptual metacognition. Philos. Stud. 178(7), 2337–2356 (2021)
Chen, D., Bai, Y., Zhao, W., Ament, S., Gregoire, J.M., Gomes, C.P.: Deep reasoning networks: Thinking fast and slow. arXiv preprint arXiv:1906.00855 (2019)
Cox, M.T.: Metacognition in computation: a selected research review. Artif. Intell. 169(2), 104–141 (2005)
Cox, M.T., Raja, A.: Metareasoning: Thinking About Thinking. MIT Press, Cambridge (2011)
Fagin, R., Moses, Y., Halpern, J.Y., Vardi, M.Y.: Reasoning About Knowledge. MIT press, Cambridge (2003)
Flavell, J.H.: Metacognition and cognitive monitoring: a new area of cognitive-developmental inquiry. Am. Psychol. 34(10), 906 (1979)
Ganapini, M.B.: Combining fast and slow thinking for human-like and efficient decisions in constrained environments. In: Proceedings of the 16th International Workshop on Neural-Symbolic Learning and Reasoning (NeSy 2022) Co-located with (IJCLR 2022), vol. 3212 of CEUR Workshop Proceedings, pp. 171–185 (2022). CEUR-WS.org
Gigerenzer, G., Brighton, H.: Homo heuristicus: why biased minds make better inferences. Top. Cogn. Sci. 1(1), 107–143 (2009)
Glazier, A., Loreggia, A., Mattei, N., Rahgooy, T., Rossi, F., Venable, K.B.: Making human-like trade-offs in constrained environments by learning from demonstrations. arXiv preprint arXiv:2109.11018 (2021)
Goel, G., Chen, N., Wierman, A.: Thinking fast and slow: optimization decomposition across timescales. In: IEEE 56th Conference on Decision and Control (CDC), pp. 1291–1298. IEEE (2017)
Gulati, A., Soni, S., Rao, S.: Interleaving fast and slow decision making. arXiv preprint arXiv:2010.16244 (2020)
Kahneman, D.: Thinking, Fast and Slow. Macmillan, New York (2011)
Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm selection: survey and perspectives. Evol. Comput. 27(1), 3–45 (2019)
Kim, D., Park, G.Y., John, P., Lee, S.W., et al.: Task complexity interacts with state-space uncertainty in the arbitration between model-based and model-free learning. Nat. Commun. 10(1), 1–14 (2019)
Kralik, J.D., et al.: Metacognition for a common model of cognition. Procedia Comput. Sci. 145, 730–739 (2018)
Littman, M.L., et al.: gathering strength, gathering storms: The one hundred year study on artificial intelligence (AI100) 2021 study panel report. Stanford University (2021)
Loreggia, A., Mattei, N., Rahgooy, T., Rossi, F., Srivastava, B., Venable, K.B.: Making human-like moral decisions. In: Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society, AIES’22, pp. 447–454. Association for Computing Machinery, New York, NY, USA (2022)
Marcus, G.: The next decade in AI: four steps towards robust artificial intelligence. arXiv preprint arXiv:2002.06177 (2020)
Mittal, S., Joshi, A., Finin, T.: Thinking, fast and slow: combining vector spaces and knowledge graphs. arXiv preprint arXiv:1708.03310 (2017)
Nelson, T.O.: Metamemory: a theoretical framework and new findings. In: Psychology of Learning and Motivation, vol. 26, pp. 125–173. Elsevier (1990)
Noothigattu, R., et al.: Teaching AI agents ethical values using reinforcement learning and policy orchestration. IBM J. Res. Dev. 63(4/5), 2:1-2:9 (2019)
Posner, I.: Robots thinking fast and slow: on dual process theory and metacognition in embodied AI (2020)
Proust, J.: The Philosophy of Metacognition: Mental Agency and Self-awareness. OUP Oxford, Oxford (2013)
Rossi, F., Loreggia, A.: Preferences and ethical priorities: thinking fast and slow in AI. In: Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems, pp. 3–4 (2019)
Rossi, F., Mattei, N.: Building ethically bounded AI. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI) (2019)
Shenhav, A., Botvinick, M.M., Cohen, J.D.: The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79(2), 217–240 (2013)
Thompson, V.A., Turner, J.A.P., Pennycook, G.: Intuition, reason, and metacognition. Cogn. Psychol. 63(3), 107–140 (2011)
Acknowledgements
Nicholas Mattei was supported by NSF Awards IIS-RI-2007955, IIS-III-2107505, and IIS-RI-2134857, as well as an IBM Faculty Award and a Google Research Scholar Award. K. Brent Venable are supported by NSF Award IIS-2008011.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ganapini, M.B. et al. (2023). Thinking Fast and Slow in AI: The Role of Metacognition. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2022. Lecture Notes in Computer Science, vol 13811. Springer, Cham. https://doi.org/10.1007/978-3-031-25891-6_38
Download citation
DOI: https://doi.org/10.1007/978-3-031-25891-6_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25890-9
Online ISBN: 978-3-031-25891-6
eBook Packages: Computer ScienceComputer Science (R0)