Thinking Fast and Slow in AI: The Role of Metacognition | SpringerLink
Skip to main content

Thinking Fast and Slow in AI: The Role of Metacognition

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2022)

Abstract

Artificial intelligence (AI) still lacks human capabilities, like adaptability, generalizability, self-control, consistency, common sense, and causal reasoning. Humans achieve some of these capabilities by carefully combining their thinking “fast” and “slow”. In this work we define an AI architecture that embeds these two modalities, and we study the role of a “meta-cognitive” component, with the role of coordinating and combining them, in achieving higher quality decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ackerman, R., Thompson, V.A.: Meta-reasoning: Monitoring and control of thinking and reasoning. Trends Cogn. Sci. 21(8), 607–617 (2017)

    Article  Google Scholar 

  2. Anthony, T., Tian, Z., Barber, D.: Thinking fast and slow with deep learning and tree search. In: Advances in Neural Information Processing Systems, pp. 5360–5370 (2017)

    Google Scholar 

  3. Balakrishnan, A., Bouneffouf, D., Mattei, N., Rossi, F.: Incorporating behavioral constraints in online AI systems. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI) (2019)

    Google Scholar 

  4. Bengio, Y.: The consciousness prior. arXiv preprint arXiv:1709.08568 (2017)

  5. Booch, G., et al.: Thinking fast and slow in AI. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 15042–15046 (2021)

    Google Scholar 

  6. Carruthers, P.: Explicit nonconceptual metacognition. Philos. Stud. 178(7), 2337–2356 (2021)

    Article  Google Scholar 

  7. Chen, D., Bai, Y., Zhao, W., Ament, S., Gregoire, J.M., Gomes, C.P.: Deep reasoning networks: Thinking fast and slow. arXiv preprint arXiv:1906.00855 (2019)

  8. Cox, M.T.: Metacognition in computation: a selected research review. Artif. Intell. 169(2), 104–141 (2005)

    Article  Google Scholar 

  9. Cox, M.T., Raja, A.: Metareasoning: Thinking About Thinking. MIT Press, Cambridge (2011)

    Book  Google Scholar 

  10. Fagin, R., Moses, Y., Halpern, J.Y., Vardi, M.Y.: Reasoning About Knowledge. MIT press, Cambridge (2003)

    MATH  Google Scholar 

  11. Flavell, J.H.: Metacognition and cognitive monitoring: a new area of cognitive-developmental inquiry. Am. Psychol. 34(10), 906 (1979)

    Article  Google Scholar 

  12. Ganapini, M.B.: Combining fast and slow thinking for human-like and efficient decisions in constrained environments. In: Proceedings of the 16th International Workshop on Neural-Symbolic Learning and Reasoning (NeSy 2022) Co-located with (IJCLR 2022), vol. 3212 of CEUR Workshop Proceedings, pp. 171–185 (2022). CEUR-WS.org

    Google Scholar 

  13. Gigerenzer, G., Brighton, H.: Homo heuristicus: why biased minds make better inferences. Top. Cogn. Sci. 1(1), 107–143 (2009)

    Article  Google Scholar 

  14. Glazier, A., Loreggia, A., Mattei, N., Rahgooy, T., Rossi, F., Venable, K.B.: Making human-like trade-offs in constrained environments by learning from demonstrations. arXiv preprint arXiv:2109.11018 (2021)

  15. Goel, G., Chen, N., Wierman, A.: Thinking fast and slow: optimization decomposition across timescales. In: IEEE 56th Conference on Decision and Control (CDC), pp. 1291–1298. IEEE (2017)

    Google Scholar 

  16. Gulati, A., Soni, S., Rao, S.: Interleaving fast and slow decision making. arXiv preprint arXiv:2010.16244 (2020)

  17. Kahneman, D.: Thinking, Fast and Slow. Macmillan, New York (2011)

    Google Scholar 

  18. Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm selection: survey and perspectives. Evol. Comput. 27(1), 3–45 (2019)

    Article  Google Scholar 

  19. Kim, D., Park, G.Y., John, P., Lee, S.W., et al.: Task complexity interacts with state-space uncertainty in the arbitration between model-based and model-free learning. Nat. Commun. 10(1), 1–14 (2019)

    Article  Google Scholar 

  20. Kralik, J.D., et al.: Metacognition for a common model of cognition. Procedia Comput. Sci. 145, 730–739 (2018)

    Article  Google Scholar 

  21. Littman, M.L., et al.: gathering strength, gathering storms: The one hundred year study on artificial intelligence (AI100) 2021 study panel report. Stanford University (2021)

    Google Scholar 

  22. Loreggia, A., Mattei, N., Rahgooy, T., Rossi, F., Srivastava, B., Venable, K.B.: Making human-like moral decisions. In: Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society, AIES’22, pp. 447–454. Association for Computing Machinery, New York, NY, USA (2022)

    Google Scholar 

  23. Marcus, G.: The next decade in AI: four steps towards robust artificial intelligence. arXiv preprint arXiv:2002.06177 (2020)

  24. Mittal, S., Joshi, A., Finin, T.: Thinking, fast and slow: combining vector spaces and knowledge graphs. arXiv preprint arXiv:1708.03310 (2017)

  25. Nelson, T.O.: Metamemory: a theoretical framework and new findings. In: Psychology of Learning and Motivation, vol. 26, pp. 125–173. Elsevier (1990)

    Google Scholar 

  26. Noothigattu, R., et al.: Teaching AI agents ethical values using reinforcement learning and policy orchestration. IBM J. Res. Dev. 63(4/5), 2:1-2:9 (2019)

    Article  Google Scholar 

  27. Posner, I.: Robots thinking fast and slow: on dual process theory and metacognition in embodied AI (2020)

    Google Scholar 

  28. Proust, J.: The Philosophy of Metacognition: Mental Agency and Self-awareness. OUP Oxford, Oxford (2013)

    Book  Google Scholar 

  29. Rossi, F., Loreggia, A.: Preferences and ethical priorities: thinking fast and slow in AI. In: Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems, pp. 3–4 (2019)

    Google Scholar 

  30. Rossi, F., Mattei, N.: Building ethically bounded AI. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI) (2019)

    Google Scholar 

  31. Shenhav, A., Botvinick, M.M., Cohen, J.D.: The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79(2), 217–240 (2013)

    Article  Google Scholar 

  32. Thompson, V.A., Turner, J.A.P., Pennycook, G.: Intuition, reason, and metacognition. Cogn. Psychol. 63(3), 107–140 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Nicholas Mattei was supported by NSF Awards IIS-RI-2007955, IIS-III-2107505, and IIS-RI-2134857, as well as an IBM Faculty Award and a Google Research Scholar Award. K. Brent Venable are supported by NSF Award IIS-2008011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bergamaschi Ganapini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ganapini, M.B. et al. (2023). Thinking Fast and Slow in AI: The Role of Metacognition. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2022. Lecture Notes in Computer Science, vol 13811. Springer, Cham. https://doi.org/10.1007/978-3-031-25891-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25891-6_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25890-9

  • Online ISBN: 978-3-031-25891-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics