Enhanced Association Rules and Python | SpringerLink
Skip to main content

Enhanced Association Rules and Python

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2022)

Abstract

Association rules mining and apriori algorithm are very known tools of data mining since the 1990s. However, enhanced association rules were introduced more than 20 years earlier as a tool of mechanizing hypothesis formation – an approach to exploratory data analysis. Various, both practical and theoretical results, were achieved in relation to enhanced association rules that provide much more general rules than apriori. A short overview of these results is presented. A new implementation of an analytical procedure dealing with enhanced association rules is introduced as well as novel algorithm to find association rules not by setting quantifiers but by setting expected number of association rules which corresponds with typical data scientists’ needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In fact, not all rules are verified when optimization is in place but result is the same as if all rules would be verified.

References

  1. Cleverminer system. https://www.cleverminer.org/

  2. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, DC, USA, 26–28 May 1993, pp. 207–216 (1993). https://doi.org/10.1145/170035.170072

  3. Hahsler, M., Chelluboina, S., Hornik, K., Buchta, C.: The arules R-package ecosystem: analyzing interesting patterns from large transaction data sets. J. Mach. Learn. Res. 12, 2021–2025 (2011). http://dl.acm.org/citation.cfm?id=2021064

  4. Hájek, P., Havel, I., Chytil, M.: The GUHA method of automatic hypotheses determination. Computing 1(4), 293–308 (1966). https://doi.org/10.1007/BF02345483

    Article  MATH  Google Scholar 

  5. Hájek, P., Havránek, T.: The GUHA method – its aims and techniques (twenty-four questions and answers). Int. J. Man Mach. Stud. 10(1), 3–22 (1978). https://doi.org/10.1016/S0020-7373(78)80031-5

    Article  MATH  Google Scholar 

  6. Hájek, P., Havránek, T.: Mechanising Hypothesis Formation - Mathematical Foundations for a General Theory. Springer, Heidelberg (1978). https://www.springer.com/gp/book/9783540087380

  7. Hájek, P., Holeňa, M., Rauch, J.: The GUHA method and its meaning for data mining. J. Comput. Syst. Sci. 76(1), 34–48 (2010). https://doi.org/10.1016/j.jcss.2009.05.004

    Article  MathSciNet  MATH  Google Scholar 

  8. Havránek, T., Chyba, M., Pokorný, D.: Processing sociological data by the GUHA method - an example. Int. J. Man Mach. Stud. 9(4), 439–447 (1977). https://doi.org/10.1016/S0020-7373(77)80012-6

    Article  Google Scholar 

  9. Ivánek, J.: Some examples of transforming ordinal data to an input for GUHA-procedures. Int. J. Man Mach. Stud. 15(3), 309–318 (1981). https://doi.org/10.1016/S0020-7373(81)80014-4

    Article  Google Scholar 

  10. Máša, P., Rauch, J.: Mining association rules between sets of items in large databases. In: Proceedings of the 12th Workshop on Uncertainty Processing, pp. 147–158. MatfyzPress (2022). http://wupes.utia.cas.cz/2022/Proceedings.pdf

  11. Powell, L., Gelich, A., Ras, Z.W.: The construction of action rules to raise artwork prices. In: Helic, D., Leitner, G., Stettinger, M., Felfernig, A., Raś, Z.W. (eds.) ISMIS 2020. LNCS (LNAI), vol. 12117, pp. 11–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59491-6_2

    Chapter  Google Scholar 

  12. Rauch, J.: Some remarks on computer realizations of GUHA procedures. Int. J. Man Mach. Stud. 10(1), 23–28 (1978). https://doi.org/10.1016/S0020-7373(78)80032-7

    Article  Google Scholar 

  13. Rauch, J.: Observational Calculi and Association Rules. Studies in Computational Intelligence, vol. 469. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-11737-4

    Book  MATH  Google Scholar 

  14. Rauch, J.: Expert deduction rules in data mining with association rules: a case study. Knowl. Inf. Syst. 59(1), 167–195 (2019)

    Article  Google Scholar 

  15. Rauch, J., Šimunek, M.: Data mining with histograms and domain knowledge - case studies and considerations. Fundam. Inform. 166(4), 349–378 (2019). https://doi.org/10.3233/FI-2019-1805

    Article  MathSciNet  MATH  Google Scholar 

  16. Rauch, J., Šimůnek, M.: Learning association rules from data through domain knowledge and automation. In: Bikakis, A., Fodor, P., Roman, D. (eds.) RuleML 2014. LNCS, vol. 8620, pp. 266–280. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09870-8_20

    Chapter  Google Scholar 

  17. Rauch, J., Šimunek, M.: Apriori and GUHA - comparing two approaches to data mining with association rules. Intell. Data Anal. 21(4), 981–1013 (2017). https://doi.org/10.3233/IDA-160069

    Article  Google Scholar 

  18. Renc, Z., Kubát, K., Kouřim, J.: An application of the GUHA method in medicine. Int. J. Man Mach. Stud. 10(1), 29–35 (1978). https://doi.org/10.1016/S0020-7373(78)80033-9

    Article  Google Scholar 

  19. Turunen, E., Dolos, K.: Revealing drivers natural behavior - a GUHA data mining approach. Mathematics 9(15), 1818 (2021). https://doi.org/10.3390/math9151818

    Article  Google Scholar 

  20. Šimůnek, M.: Academic KDD project LISp-miner. In: Abraham, A., Franke, K., Köppen, M. (eds.) Intelligent Systems Design and Applications. ASC, vol. 23, pp. 263–272. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-44999-7_25

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Rauch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Máša, P., Rauch, J. (2023). Enhanced Association Rules and Python. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2022. Lecture Notes in Computer Science, vol 13811. Springer, Cham. https://doi.org/10.1007/978-3-031-25891-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25891-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25890-9

  • Online ISBN: 978-3-031-25891-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics