Grover on SPARKLE | SpringerLink
Skip to main content

Grover on SPARKLE

  • Conference paper
  • First Online:
Information Security Applications (WISA 2022)

Abstract

Quantum computers that take advantage of quantum mechanics efficiently model and solve certain hard problems. In particular, quantum computers are considered a major threat to cryptography in the near future. In this current situation, analysis of quantum computer attacks on ciphers is a major way to evaluate the security of ciphers. Several studies of quantum circuits for block ciphers have been presented. However, quantum implementations for Authenticated Encryption with Associated Data (AEAD) are not actively studied.

In this paper, we present a quantum implementation for authenticated ciphers of SPARKLE, a finalist candidate of the National Institute of Standards and Technology (NIST) Lightweight Cryptography (LWC) project. We apply various techniques for optimization by considering trade-off between qubits and gates/depth in quantum computers. Based on proposed quantum circuit, we estimate the cost of applying key search using Grover’s algorithm, which degrades the security of symmetric key ciphers. Afterward, we further explore the expected level of post-quantum security for SPARKLE on the basis of post-quantum security requirements of NIST.

This work was partly supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No.2018-0-00264, Research on Blockchain Security Technology for IoT Services, 50%) and this work was partly supported by Institute for Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (<Q|Crypton>, No. 2019-0-00033, Study on Quantum Security Evaluation of Cryptography based on Computational Quantum Complexity, 50%).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/YangYu34/SPARKLE_SCHWAEMM.git.

References

  1. Abrams, D.S., Lloyd, S.: Nonlinear quantum mechanics implies polynomial-time solution for NP-complete and #P problems. Phys. Rev. Lett. 81(18), 3992 (1998)

    Article  Google Scholar 

  2. Tsai, K.-L., Leu, F.-Y., Wu, T.-H., Chiou, S.S., Liu, Y.-W., Liu, H.-Y.: A secure ECC-based electronic medical record system. J. Internet Serv. Inf. Secur. (JISIS) 4, 47–57 (2014)

    Google Scholar 

  3. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Singh, K., Rangan, C.P., Banerjee, A.: Lattice based efficient threshold public key encryption scheme. J. Wirel. Mob. Netw. Ubiquit. Comput. Dependable Appl. (JoWUA) 4, 93–107 (2013)

    Google Scholar 

  5. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying Grover’s algorithm to AES: quantum resource estimates. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 29–43. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8_3

    Chapter  MATH  Google Scholar 

  6. Langenberg, B., Pham, H., Steinwandt, R.: Reducing the cost of implementing the advanced encryption standard as a quantum circuit. IEEE Trans. Quantum Eng. 1, 1–12 (2020)

    Article  Google Scholar 

  7. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing Grover oracles for quantum key search on AES and LowMC. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 280–310. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_10

    Chapter  Google Scholar 

  8. Zou, J., Wei, Z., Sun, S., Liu, X., Wu, W.: Quantum circuit implementations of AES with fewer qubits. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 697–726. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_24

    Chapter  Google Scholar 

  9. Jang, K., Choi, S., Kwon, H., Kim, H., Park, J., Seo, H.: Grover on Korean block ciphers. Appl. Sci. 10(18), 6407 (2020)

    Article  Google Scholar 

  10. Jang, K., Song, G., Kim, H., Kwon, H., Kim, H., Seo, H.: Efficient implementation of PRESENT and GIFT on quantum computers. Appl. Sci. 11(11), 4776 (2021)

    Article  Google Scholar 

  11. Jang, K., Choi, S., Kwon, H., Seo, H.: Grover on speck: quantum resource estimates. Cryptology ePrint Archive (2020)

    Google Scholar 

  12. Jang, K., et al.: Grover on PIPO. Electronics 10(10), 1194 (2021)

    Article  Google Scholar 

  13. Bijwe, S., Chauhan, A.K., Sanadhya, S.K.: Quantum search for lightweight block ciphers: GIFT, SKINNY, SATURNIN. Cryptology ePrint Archive (2020)

    Google Scholar 

  14. Baksi, A., Jang, K., Song, G., Seo, H., Xiang, Z.: Quantum implementation and resource estimates for rectangle and knot. Quantum Inf. Process. 20(12), 1–24 (2021). https://doi.org/10.1007/s11128-021-03307-6

    Article  MathSciNet  MATH  Google Scholar 

  15. Beierle, C., et al.: Schwaemm and Esch: lightweight authenticated encryption and hashing using the sparkle permutation family. NIST Round, vol. 2 (2019)

    Google Scholar 

  16. Draper, T.G., Kutin, S.A., Rains, E.M., Svore, K.M.: A logarithmic-depth quantum carry-lookahead adder. arXiv preprint quant-ph/0406142 (2004)

    Google Scholar 

  17. Takahashi, Y., Tani, S., Kunihiro, N.: Quantum addition circuits and unbounded fan-out. arXiv preprint arXiv:0910.2530 (2009)

  18. Draper, T.G.: Addition on a quantum computer. arXiv preprint quant-ph/0008033 (2000)

    Google Scholar 

  19. Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-carry addition circuit. arXiv preprint quant-ph/0410184 (2004)

    Google Scholar 

  20. Amy, M., Maslov, D., Mosca, M., Roetteler, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32, 818–830 (2013)

    Article  Google Scholar 

  21. Fedorov, A., Steffen, L., Baur, M., da Silva, M.P., Wallraff, A.: Implementation of a Toffoli gate with superconducting circuits. Nature 481(7380), 170–172 (2012)

    Article  Google Scholar 

  22. Ralph, T., Resch, K., Gilchrist, A.: Efficient Toffoli gates using qudits. Phys. Rev. A 75(2), 022313 (2007)

    Article  Google Scholar 

  23. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschr. Phys. 46, 493–505 (1998)

    Article  Google Scholar 

  24. NIST. Submission requirements and evaluation criteria for the post-quantum cryptography standardization process (2016). https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

  25. Almazrooie, M., Samsudin, A., Abdullah, R., Mutter, K.N.: Quantum reversible circuit of AES-128. Quantum Inf. Process. 17, 1–30 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwajeong Seo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Y., Jang, K., Kim, H., Song, G., Seo, H. (2023). Grover on SPARKLE. In: You, I., Youn, TY. (eds) Information Security Applications. WISA 2022. Lecture Notes in Computer Science, vol 13720. Springer, Cham. https://doi.org/10.1007/978-3-031-25659-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25659-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25658-5

  • Online ISBN: 978-3-031-25659-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics