Robust Deep Learning-Based Approach for Retinal Layer Segmentation in Optical Coherence Tomography Images | SpringerLink
Skip to main content

Robust Deep Learning-Based Approach for Retinal Layer Segmentation in Optical Coherence Tomography Images

  • Conference paper
  • First Online:
Computer Aided Systems Theory – EUROCAST 2022 (EUROCAST 2022)

Abstract

In recent years, the medical image analysis field has experienced remarkable growth. Advances in computational power have made it possible to create increasingly complex diagnostic support systems based on deep learning. In ophthalmology, optical coherence tomography (OCT) enables the capture of highly detailed images of the retinal morphology, being the reference technology for the analysis of relevant ocular structures. This paper proposes a new methodology for the automatic segmentation of the main retinal layers using OCT images. The system provides a useful tool that facilitates the clinical evaluation of key ocular structures, such as the choroid, vitreous humour or inner retinal layers, as potential computational biomarkers for the analysis of different neurodegenerative disorders, including multiple sclerosis and Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://people.duke.edu/~sf59/Chiu_BOE_2014_dataset.htm.

References

  1. Ben-Cohen, A., et al.: Retinal layers segmentation using fully convolutional network in oct images (2017). https://www.rsipvision.com/wp-content/uploads/2017/06/Retinal-Layers-Segmentation.pdf

  2. Ding, J., Wong, T.Y.: Current epidemiology of diabetic retinopathy and diabetic macular edema. Curr. Diab. Rep. 12(4), 346–354 (2012)

    Article  Google Scholar 

  3. González-López, A., de Moura, J., Novo, J., Ortega, M., Penedo, M.: Robust segmentation of retinal layers in optical coherence tomography images based on a multistage active contour model. Heliyon 5(2), e01271 (2019)

    Google Scholar 

  4. Klein, R., Klein, B.E.: The prevalence of age-related eye diseases and visual impairment in aging: current estimates. Investigat. Ophthalmol. Vis. Sci. 54(14), ORSF5-ORSF13 (2013)

    Google Scholar 

  5. Kugelman, J., Alonso-Caneiro, D., Read, S.A., Vincent, S.J., Collins, M.J.: Automatic segmentation of OCT retinal boundaries using recurrent neural networks and graph search. Biomed. Opt. Expr. 9(11), 5759 (2018). https://doi.org/10.1364/boe.9.005759, https://doi.org/10.1364/boe.9.005759

  6. Li, Q., et al.: DeepRetina: layer segmentation of retina in OCT images using deep learning. Transl. Vis. Sci. Technol. 9(2), 61 (2020). https://doi.org/10.1167/tvst.9.2.61

  7. de Moura, J., Novo, J., Penas, S., Ortega, M., Silva, J., Mendonça, A.M.: Automatic characterization of the serous retinal detachment associated with the subretinal fluid presence in optical coherence tomography images. Proc. Comput. Sci. 126, 244–253 (2018)

    Article  Google Scholar 

  8. de Moura, J., Samagaio, G., Novo, J., Almuina, P., Fernández, M.I., Ortega, M.: Joint diabetic macular edema segmentation and characterization in OCT images. J. Digit. Imaging 33(5), 1335–1351 (2020)

    Article  Google Scholar 

  9. de Moura, J., Novo, J., Rouco, J., Penedo, M.G., Ortega, M.: Automatic identification of intraretinal cystoid regions in optical coherence tomography. In: ten Teije, A., Popow, C., Holmes, J.H., Sacchi, L. (eds.) AIME 2017. LNCS (LNAI), vol. 10259, pp. 305–315. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59758-4_35

    Chapter  Google Scholar 

  10. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  11. Samagaio, G., Estévez, A., de Moura, J., Novo, J., Fernández, M.I., Ortega, M.: Automatic macular edema identification and characterization using OCT images. Comput. Meth. Prog. Biomed. 163, 47–63 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Instituto de Salud Carlos III, Government of Spain, DTS18/00136 research project; Ministerio de Ciencia e Innovación y Universidades, Government of Spain, RTI2018-095894-B-I00 research project; Ministerio de Ciencia e Innovación, Government of Spain through the research project with reference PID2019-108435RB-I00; Consellería de Cultura, Educación e Universidade, Xunta de Galicia, Grupos de Referencia Competitiva, grant ref. ED431C 2020/24 and postdoctoral grant ref. ED481B 2021/059; Axencia Galega de Innovación (GAIN), Xunta de Galicia, grant ref. IN845D 2020/38; CITIC, Centro de Investigación de Galicia ref. ED431G 2019/01, receives financial support from Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia, through the ERDF (80%) and Secretaría Xeral de Universidades (20%).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucía Ramos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Budiño, A., Ramos, L., de Moura, J., Novo, J., Penedo, M.G., Ortega, M. (2022). Robust Deep Learning-Based Approach for Retinal Layer Segmentation in Optical Coherence Tomography Images. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2022. EUROCAST 2022. Lecture Notes in Computer Science, vol 13789. Springer, Cham. https://doi.org/10.1007/978-3-031-25312-6_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25312-6_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25311-9

  • Online ISBN: 978-3-031-25312-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics