Abstract
In recent years, the medical image analysis field has experienced remarkable growth. Advances in computational power have made it possible to create increasingly complex diagnostic support systems based on deep learning. In ophthalmology, optical coherence tomography (OCT) enables the capture of highly detailed images of the retinal morphology, being the reference technology for the analysis of relevant ocular structures. This paper proposes a new methodology for the automatic segmentation of the main retinal layers using OCT images. The system provides a useful tool that facilitates the clinical evaluation of key ocular structures, such as the choroid, vitreous humour or inner retinal layers, as potential computational biomarkers for the analysis of different neurodegenerative disorders, including multiple sclerosis and Alzheimer’s disease.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ben-Cohen, A., et al.: Retinal layers segmentation using fully convolutional network in oct images (2017). https://www.rsipvision.com/wp-content/uploads/2017/06/Retinal-Layers-Segmentation.pdf
Ding, J., Wong, T.Y.: Current epidemiology of diabetic retinopathy and diabetic macular edema. Curr. Diab. Rep. 12(4), 346–354 (2012)
González-López, A., de Moura, J., Novo, J., Ortega, M., Penedo, M.: Robust segmentation of retinal layers in optical coherence tomography images based on a multistage active contour model. Heliyon 5(2), e01271 (2019)
Klein, R., Klein, B.E.: The prevalence of age-related eye diseases and visual impairment in aging: current estimates. Investigat. Ophthalmol. Vis. Sci. 54(14), ORSF5-ORSF13 (2013)
Kugelman, J., Alonso-Caneiro, D., Read, S.A., Vincent, S.J., Collins, M.J.: Automatic segmentation of OCT retinal boundaries using recurrent neural networks and graph search. Biomed. Opt. Expr. 9(11), 5759 (2018). https://doi.org/10.1364/boe.9.005759, https://doi.org/10.1364/boe.9.005759
Li, Q., et al.: DeepRetina: layer segmentation of retina in OCT images using deep learning. Transl. Vis. Sci. Technol. 9(2), 61 (2020). https://doi.org/10.1167/tvst.9.2.61
de Moura, J., Novo, J., Penas, S., Ortega, M., Silva, J., Mendonça, A.M.: Automatic characterization of the serous retinal detachment associated with the subretinal fluid presence in optical coherence tomography images. Proc. Comput. Sci. 126, 244–253 (2018)
de Moura, J., Samagaio, G., Novo, J., Almuina, P., Fernández, M.I., Ortega, M.: Joint diabetic macular edema segmentation and characterization in OCT images. J. Digit. Imaging 33(5), 1335–1351 (2020)
de Moura, J., Novo, J., Rouco, J., Penedo, M.G., Ortega, M.: Automatic identification of intraretinal cystoid regions in optical coherence tomography. In: ten Teije, A., Popow, C., Holmes, J.H., Sacchi, L. (eds.) AIME 2017. LNCS (LNAI), vol. 10259, pp. 305–315. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59758-4_35
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Samagaio, G., Estévez, A., de Moura, J., Novo, J., Fernández, M.I., Ortega, M.: Automatic macular edema identification and characterization using OCT images. Comput. Meth. Prog. Biomed. 163, 47–63 (2018)
Acknowledgements
This research was funded by Instituto de Salud Carlos III, Government of Spain, DTS18/00136 research project; Ministerio de Ciencia e Innovación y Universidades, Government of Spain, RTI2018-095894-B-I00 research project; Ministerio de Ciencia e Innovación, Government of Spain through the research project with reference PID2019-108435RB-I00; Consellería de Cultura, Educación e Universidade, Xunta de Galicia, Grupos de Referencia Competitiva, grant ref. ED431C 2020/24 and postdoctoral grant ref. ED481B 2021/059; Axencia Galega de Innovación (GAIN), Xunta de Galicia, grant ref. IN845D 2020/38; CITIC, Centro de Investigación de Galicia ref. ED431G 2019/01, receives financial support from Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia, through the ERDF (80%) and Secretaría Xeral de Universidades (20%).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Budiño, A., Ramos, L., de Moura, J., Novo, J., Penedo, M.G., Ortega, M. (2022). Robust Deep Learning-Based Approach for Retinal Layer Segmentation in Optical Coherence Tomography Images. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2022. EUROCAST 2022. Lecture Notes in Computer Science, vol 13789. Springer, Cham. https://doi.org/10.1007/978-3-031-25312-6_50
Download citation
DOI: https://doi.org/10.1007/978-3-031-25312-6_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25311-9
Online ISBN: 978-3-031-25312-6
eBook Packages: Computer ScienceComputer Science (R0)