Cyclability, Connectivity and Circumference | SpringerLink
Skip to main content

Cyclability, Connectivity and Circumference

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13947))

Included in the following conference series:

  • 506 Accesses

Abstract

In a graph G, a subset of vertices \(S \subseteq V(G)\) is said to be cyclable if there is a cycle containing the vertices in some order. G is said to be k-cyclable if any subset of \(k \ge 2\) vertices is cyclable. If any k ordered vertices are present in a common cycle in that order, then the graph is said to be k-ordered. We show that when \(k \le \sqrt{n+3}\), k-cyclable graphs also have circumference \(c(G) \ge 2k\), and that this is best possible. Furthermore when \(k \le \frac{3n}{4} -1\), \(c(G) \ge k+2\), and for k-ordered graphs we show \(c(G) \ge \min \{n,2k\}\). We also generalize a result by Byer et al. [4] on the maximum number of edges in nonhamiltonian k-connected graphs, and show that if G is a k-connected graph of order \(n \ge 2(k^2+k)\) with \(|E(G)| > \left( {\begin{array}{c}n-k\\ 2\end{array}}\right) + k^2\), then the graph is hamiltonian, and moreover the extremal graphs are unique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9723
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12154
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bauer, D., McGuire, L., Trommel, H., Veldman, H.J.: Long cycles in 3-cyclable graphs. Discret. Math. 218(1–3), 1–8 (2000). https://doi.org/10.1016/S0012-365X(99)00331-3

    Article  MathSciNet  MATH  Google Scholar 

  2. Björklund, A., Husfeldt, T., Taslaman, N.: Shortest cycle through specified elements. In: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1747–1753 (2012). https://doi.org/10.1137/1.9781611973099.139

  3. Bondy, J.A., Chvatal, V.: A method in graph theory. Discret. Math. 15(2), 111–135 (1976). https://doi.org/10.1016/0012-365X(76)90078-9

    Article  MathSciNet  MATH  Google Scholar 

  4. Byer, O.D., Smeltzer, D.L.: Edge bounds in nonhamiltonian k-connected graphs. Discret. Math. 307(13), 1572–1579 (2007). https://doi.org/10.1016/j.disc.2006.09.008

    Article  MathSciNet  MATH  Google Scholar 

  5. Chvátal, V., Erdös, P.: A note on Hamiltonian circuits. Discret. Math. 2(2), 111–113 (1972). https://doi.org/10.1016/0012-365X(72)90079-9

    Article  MathSciNet  MATH  Google Scholar 

  6. Crespelle, C., Golovach, P.A.: Cyclability in graph classes. Discret. Appl. Math. 313, 147–178 (2022). https://doi.org/10.1016/j.dam.2022.01.021

    Article  MathSciNet  MATH  Google Scholar 

  7. Dirac, G.A.: Some theorems on abstract graphs. Proc. London Math. Soc. s3-2(1), 69–81 (1952). https://doi.org/10.1112/plms/s3-2.1.69

  8. Dirac, G.A.: In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen. Math. Nachr. 22(1–2), 61–85 (1960). https://doi.org/10.1002/mana.19600220107

    Article  MathSciNet  MATH  Google Scholar 

  9. Doyen, J., Van Diest, V.: New families of hypohamiltonian graphs. Discret. Math. 13(3), 225–236 (1975). https://doi.org/10.1016/0012-365X(75)90020-5

    Article  MathSciNet  MATH  Google Scholar 

  10. Erdős, P., Gallai, T.: On maximal paths and circuits of graphs. Acta Mathematica Academiae Scientiarum Hungaricae 10(3–4), 337–356 (1959). https://doi.org/10.1007/BF02024498

    Article  MathSciNet  MATH  Google Scholar 

  11. Faudree, R.J.: Survey of results on k-ordered graphs. Discret. Math. 229(1–3), 73–87 (2001). https://doi.org/10.1016/S0012-365X(00)00202-8

    Article  MathSciNet  MATH  Google Scholar 

  12. Gould, R.J.: A look at cycles containing specified elements of a graph. Discret. Math. 309(21), 6299–6311 (2009). https://doi.org/10.1016/j.disc.2008.04.017

    Article  MathSciNet  MATH  Google Scholar 

  13. J.L. Fouquet, J.J.: Probléme 438. Problémes combinatoires et théorie des graphes, Univ. Orsay, Orsay (1976)

    Google Scholar 

  14. Kawarabayashi, K.: An improved algorithm for finding cycles through elements. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 374–384. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68891-4_26

    Chapter  Google Scholar 

  15. Li, H.: Generalizations of Dirac’s theorem in Hamiltonian graph theory-a survey. Discret. Math. 313(19), 2034–2053 (2013). https://doi.org/10.1016/j.disc.2012.11.025

    Article  MathSciNet  MATH  Google Scholar 

  16. Ng, L., Schultz, M.: k-ordered Hamiltonian graphs. J. Graph Theory 24(1), 45–57 (1997). https://doi.org/10.1002/(SICI)1097-0118(199701)24:1<45::AID-JGT6>3.0.CO;2-J

    Article  MathSciNet  MATH  Google Scholar 

  17. Suil, O., West, D.B., Wu, H.: Longest cycles in k-connected graphs with given independence number. J. Comb. Theory Ser. B 101(6), 480–485 (2011). https://doi.org/10.1016/j.jctb.2011.02.005

    Article  MathSciNet  MATH  Google Scholar 

  18. Ore, O.: Note on Hamilton circuits. Am. Math. Mon. 67(1), 55 (1960). https://doi.org/10.2307/2308928

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anish Hebbar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balachandran, N., Hebbar, A. (2023). Cyclability, Connectivity and Circumference. In: Bagchi, A., Muthu, R. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2023. Lecture Notes in Computer Science, vol 13947. Springer, Cham. https://doi.org/10.1007/978-3-031-25211-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25211-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25210-5

  • Online ISBN: 978-3-031-25211-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics