Abstract
In a graph G, a subset of vertices \(S \subseteq V(G)\) is said to be cyclable if there is a cycle containing the vertices in some order. G is said to be k-cyclable if any subset of \(k \ge 2\) vertices is cyclable. If any k ordered vertices are present in a common cycle in that order, then the graph is said to be k-ordered. We show that when \(k \le \sqrt{n+3}\), k-cyclable graphs also have circumference \(c(G) \ge 2k\), and that this is best possible. Furthermore when \(k \le \frac{3n}{4} -1\), \(c(G) \ge k+2\), and for k-ordered graphs we show \(c(G) \ge \min \{n,2k\}\). We also generalize a result by Byer et al. [4] on the maximum number of edges in nonhamiltonian k-connected graphs, and show that if G is a k-connected graph of order \(n \ge 2(k^2+k)\) with \(|E(G)| > \left( {\begin{array}{c}n-k\\ 2\end{array}}\right) + k^2\), then the graph is hamiltonian, and moreover the extremal graphs are unique.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bauer, D., McGuire, L., Trommel, H., Veldman, H.J.: Long cycles in 3-cyclable graphs. Discret. Math. 218(1–3), 1–8 (2000). https://doi.org/10.1016/S0012-365X(99)00331-3
Björklund, A., Husfeldt, T., Taslaman, N.: Shortest cycle through specified elements. In: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1747–1753 (2012). https://doi.org/10.1137/1.9781611973099.139
Bondy, J.A., Chvatal, V.: A method in graph theory. Discret. Math. 15(2), 111–135 (1976). https://doi.org/10.1016/0012-365X(76)90078-9
Byer, O.D., Smeltzer, D.L.: Edge bounds in nonhamiltonian k-connected graphs. Discret. Math. 307(13), 1572–1579 (2007). https://doi.org/10.1016/j.disc.2006.09.008
Chvátal, V., Erdös, P.: A note on Hamiltonian circuits. Discret. Math. 2(2), 111–113 (1972). https://doi.org/10.1016/0012-365X(72)90079-9
Crespelle, C., Golovach, P.A.: Cyclability in graph classes. Discret. Appl. Math. 313, 147–178 (2022). https://doi.org/10.1016/j.dam.2022.01.021
Dirac, G.A.: Some theorems on abstract graphs. Proc. London Math. Soc. s3-2(1), 69–81 (1952). https://doi.org/10.1112/plms/s3-2.1.69
Dirac, G.A.: In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen. Math. Nachr. 22(1–2), 61–85 (1960). https://doi.org/10.1002/mana.19600220107
Doyen, J., Van Diest, V.: New families of hypohamiltonian graphs. Discret. Math. 13(3), 225–236 (1975). https://doi.org/10.1016/0012-365X(75)90020-5
Erdős, P., Gallai, T.: On maximal paths and circuits of graphs. Acta Mathematica Academiae Scientiarum Hungaricae 10(3–4), 337–356 (1959). https://doi.org/10.1007/BF02024498
Faudree, R.J.: Survey of results on k-ordered graphs. Discret. Math. 229(1–3), 73–87 (2001). https://doi.org/10.1016/S0012-365X(00)00202-8
Gould, R.J.: A look at cycles containing specified elements of a graph. Discret. Math. 309(21), 6299–6311 (2009). https://doi.org/10.1016/j.disc.2008.04.017
J.L. Fouquet, J.J.: Probléme 438. Problémes combinatoires et théorie des graphes, Univ. Orsay, Orsay (1976)
Kawarabayashi, K.: An improved algorithm for finding cycles through elements. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 374–384. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68891-4_26
Li, H.: Generalizations of Dirac’s theorem in Hamiltonian graph theory-a survey. Discret. Math. 313(19), 2034–2053 (2013). https://doi.org/10.1016/j.disc.2012.11.025
Ng, L., Schultz, M.: k-ordered Hamiltonian graphs. J. Graph Theory 24(1), 45–57 (1997). https://doi.org/10.1002/(SICI)1097-0118(199701)24:1<45::AID-JGT6>3.0.CO;2-J
Suil, O., West, D.B., Wu, H.: Longest cycles in k-connected graphs with given independence number. J. Comb. Theory Ser. B 101(6), 480–485 (2011). https://doi.org/10.1016/j.jctb.2011.02.005
Ore, O.: Note on Hamilton circuits. Am. Math. Mon. 67(1), 55 (1960). https://doi.org/10.2307/2308928
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Balachandran, N., Hebbar, A. (2023). Cyclability, Connectivity and Circumference. In: Bagchi, A., Muthu, R. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2023. Lecture Notes in Computer Science, vol 13947. Springer, Cham. https://doi.org/10.1007/978-3-031-25211-2_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-25211-2_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25210-5
Online ISBN: 978-3-031-25211-2
eBook Packages: Computer ScienceComputer Science (R0)