Contour Dice Loss for Structures with Fuzzy and Complex Boundaries in Fetal MRI | SpringerLink
Skip to main content

Contour Dice Loss for Structures with Fuzzy and Complex Boundaries in Fetal MRI

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Abstract

Volumetric measurements of fetal structures in MRI are time consuming and error prone and therefore require automatic segmentation. Placenta segmentation and accurate fetal brain segmentation for gyrification assessment are particularly challenging because of the placenta fuzzy boundaries and the fetal brain cortex complex foldings. In this paper, we study the use of the Contour Dice loss for both problems and compare it to other boundary losses and to the combined Dice and Cross-Entropy loss. The loss is computed efficiently for each slice via erosion, dilation and XOR operators. We describe a new formulation of the loss akin to the Contour Dice metric. The combination of the Dice loss and the Contour Dice yielded the best performance for placenta segmentation. For fetal brain segmentation, the best performing loss was the combined Dice with Cross-Entropy loss followed by the Dice with Contour Dice loss, which performed better than other boundary losses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 19447
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 24309
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al Arif, S.M.M.R., Knapp, K., Slabaugh, G.: Shape-aware deep convolutional neural network for vertebrae segmentation. In: Glocker, B., Yao, J., Vrtovec, T., Frangi, A., Zheng, G. (eds.) MSKI 2017. LNCS, vol. 10734, pp. 12–24. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74113-0_2

    Chapter  Google Scholar 

  2. Alansary, A., et al.: Fast fully automatic segmentation of the human placenta from motion corrupted MRI. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 589–597. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_68

    Chapter  Google Scholar 

  3. Caliva, F., Iriondo, C., Martinez, A.M., Majumdar, S., Pedoia, V.: Distance map loss penalty term for semantic segmentation. In: International Conference on Medical Imaging with Deep Learning - Extended Abstract Track, pp. 08–10 (2019). https://openreview.net/forum?id=B1eIcvS45V

  4. Dubois, J., et al.: Primary cortical folding in the human newborn: an early marker of later functional development. Brain 131(8), 2028–2041 (2008)

    Article  Google Scholar 

  5. Dubois, J., et al.: The dynamics of cortical folding waves and prematurity-related deviations revealed by spatial and spectral analysis of gyrification. Neuroimage 185, 934–946 (2019)

    Article  Google Scholar 

  6. Dudovitch, G., Link-Sourani, D., Ben Sira, L., Miller, E., Ben Bashat, D., Joskowicz, L.: Deep learning automatic fetal structures segmentation in MRI scans with few annotated datasets. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 365–374. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_35

    Chapter  Google Scholar 

  7. Ebner, M., et al.: An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI. Neuroimage 206, 116324 (2020)

    Article  Google Scholar 

  8. Han, M., et al.: Automatic segmentation of human placenta images with U-Net. IEEE Access 7, 180083–180092 (2019)

    Article  Google Scholar 

  9. Hosny, I.A., Elghawabi, H.S.: Ultrafast MRI of the fetus: an increasingly important tool in prenatal diagnosis of congenital anomalies. Magn. Reson. Imaging 28(10), 1431–1439 (2010)

    Article  Google Scholar 

  10. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  11. Jurdi, R.E., Petitjean, C., Honeine, P., Cheplygina, V., Abdallah, F.: A surprisingly effective perimeter-based loss for medical image segmentation. In: Medical Imaging with Deep Learning, pp. 158–167. PMLR (2021)

    Google Scholar 

  12. Karimi, D., Salcudean, S.E.: Reducing the Hausdorff distance in medical image segmentation with convolutional neural networks. IEEE Trans. Med. Imaging 39(2), 499–513 (2019)

    Article  Google Scholar 

  13. Kervadec, H., Bouchtiba, J., Desrosiers, C., Granger, E., Dolz, J., Ayed, I.B.: Boundary loss for highly unbalanced segmentation. In: International Conference on Medical Imaging with Deep Learning, pp. 285–296. PMLR (2019)

    Google Scholar 

  14. Kiser, K.J., Barman, A., Stieb, S., Fuller, C.D., Giancardo, L.: Novel autosegmentation spatial similarity metrics capture the time required to correct segmentations better than traditional metrics in a thoracic cavity segmentation workflow. J. Digit. Imaging 34(3), 541–553 (2021)

    Article  Google Scholar 

  15. Kodym, O., Španěl, M., Herout, A.: Segmentation of head and neck organs at risk using CNN with batch dice loss. In: Brox, T., Bruhn, A., Fritz, M. (eds.) GCPR 2018. LNCS, vol. 11269, pp. 105–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12939-2_8

    Chapter  Google Scholar 

  16. Ma, J., et al.: Loss odyssey in medical image segmentation. Med. Image Anal. 71, 102035 (2021)

    Article  Google Scholar 

  17. Nikolov, S., et al.: Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. arXiv preprint arXiv:1809.04430 (2018)

  18. Payette, K., et al.: Fetal brain tissue annotation and segmentation challenge results. arXiv preprint arXiv:2204.09573 (2022)

  19. Pietsch, M., et al.: APPLAUSE: automatic prediction of placental health via U-Net segmentation and statistical evaluation. Med. Image Anal. 72, 102145 (2021)

    Article  Google Scholar 

  20. Quah, B., et al.: Comparison of pure deep learning approaches for placental extraction from dynamic functional MRI sequences between 19 and 37 gestational weeks. In: Proceedings of International Society for Magnetic Resonance in Medicine (2021)

    Google Scholar 

  21. Reddy, U.M., Filly, R.A., Copel, J.A.: Prenatal imaging: ultrasonography and magnetic resonance imaging. Obstet. Gynecol. 112(1), 145 (2008)

    Article  Google Scholar 

  22. Rutherford, M., et al.: MR imaging methods for assessing fetal brain development. Dev. Neurobiol. 68(6), 700–711 (2008)

    Article  Google Scholar 

  23. Salavati, N., et al.: The possible role of placental morphometry in the detection of fetal growth restriction. Front. Physiol. 9, 1884 (2019)

    Article  Google Scholar 

  24. Salehi, S.S.M., et al.: Real-time automatic fetal brain extraction in fetal MRI by deep learning. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 720–724. IEEE (2018)

    Google Scholar 

  25. Specktor-Fadida, B., et al.: A bootstrap self-training method for sequence transfer: state-of-the-art placenta segmentation in fetal MRI. In: Sudre, C.H., et al. (eds.) UNSURE/PIPPI -2021. LNCS, vol. 12959, pp. 189–199. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87735-4_18

    Chapter  Google Scholar 

  26. Torrents-Barrena, J., et al.: Fully automatic 3D reconstruction of the placenta and its peripheral vasculature in intrauterine fetal MRI. Med. Image Anal. 54, 263–279 (2019)

    Article  Google Scholar 

  27. Torrents-Barrena, J., et al.: Segmentation and classification in MRI and us fetal imaging: recent trends and future prospects. Med. Image Anal. 51, 61–88 (2019)

    Article  Google Scholar 

  28. Yang, S., Kweon, J., Kim, Y.H.: Major vessel segmentation on X-ray coronary angiography using deep networks with a novel penalty loss function. In: International Conference on Medical Imaging with Deep Learning-Extended Abstract Track (2019)

    Google Scholar 

Download references

Acknowledgement

This research was supported in part by Kamin Grants 72061 and 72126 from the Israel Innovation Authority.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bella Specktor-Fadida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Specktor-Fadida, B., Yehuda, B., Link-Sourani, D., Ben-Sira, L., Ben-Bashat, D., Joskowicz, L. (2023). Contour Dice Loss for Structures with Fuzzy and Complex Boundaries in Fetal MRI. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13803. Springer, Cham. https://doi.org/10.1007/978-3-031-25066-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25066-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25065-1

  • Online ISBN: 978-3-031-25066-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics