Abstract
After presenting a new CCG supertagging algorithm based on morphological and dependency syntax information, we use this algorithm to create a CCG French Tree Bank corpus (20,261 sentences) based on the FTB corpus by Abeillé et al. We then use this corpus, as well as the Groningen Tree Bank corpus for the English language, to train a new BiLSTM+CRF neural architecture that uses (a) morphosyntactic input features and (b) feature correlations as input features. We show experimentally that for an inflected language like French, dependency syntax information allows significant improvement of the accuracy of the CCG supertagging task, when using deep learning techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abeillé, A., Clément, L., Toussenel, F.: Building a treebank for French. In: Treebanks: Building and Using Parsed Corpora, pp. 165–187. Kluwer (2003)
Ambati, B.R., Deoskar, T., Steedman, M.: Shift-reduce CCG parsing using neural network models. In: Proceedings of NAACL 2016, pp. 447–453 (2016)
Baldi, P., Brunak, S., Frasconi, P., Pollastri, G., Soda, G.: Bidirectional dynamics for protein secondary structure prediction. In: Sun, R., Giles, C.L. (eds.) Sequence Learning. LNCS (LNAI), vol. 1828, pp. 80–104. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44565-X_5
Bengio, Y., Frasconi, P., Simard, P.: The problem of learning long-term dependencies in recurrent networks. In: IEEE International Conference on Neural Networks 1993, pp. 1183–1188. IEEE (1993)
Bos, J., Basile, V., Evang, K., Venhuizen, N.J., Bjerva, J.: The Groningen meaning bank. In: Ide, N., Pustejovsky, J. (eds.) Handbook of Linguistic Annotation, vol. 2, pp. 463–496. Springer, Dordrecht (2017). https://doi.org/10.1007/978-94-024-0881-2_18
Candito, M., Crabbé, B., Denis, P.: Statistical French dependency parsing: treebank conversion and first results. In: Proceedings of LREC 2010, pp. 1840–1847 (2010)
Candito, M., Crabbé, B., Denis, P., Guérin, F.: Analyse syntaxique du français: des constituants aux dépendances. In: Proceedings of TALN 2009 (2009)
Cho, K., Van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder-decoder approaches. arXiv:1409.1259
Chollet, F.: Deep Learning with Python. Manning Publications (2018)
Clark, S., Curran, J.R.: Wide-coverage efficient statistical parsing with CCG and log-linear models. Comput. Linguist. 33(4), 493–552 (2007)
Collobert, R.: Deep learning for efficient discriminative parsing. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 224–232 (2011)
De Marneffe, M.C., MacCartney, B., Manning, C.D., et al.: Generating typed dependency parses from phrase structure parses. In: Proceedings of LREC 2006, vol. 6, pp. 449–454 (2006)
Fauconnier, J.P.: French word embeddings (2015). http://fauconnier.github.io
Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM. In: Proceedings of ICANN 1999. IET (1999)
Goller, C., Kuchler, A.: Learning task-dependent distributed representations by backpropagation through structure. Neural Netw. 1, 347–352 (1996)
Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610 (2005)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Hockenmaier, J., Steedman, M.: CCGbank: a corpus of CCG derivations and dependency structures extracted from the Penn Treebank. Comput. Linguist. 33(3), 355–396 (2007)
Honnibal, M., Johnson, M.: An improved non-monotonic transition system for dependency parsing. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1373–1378 (2015)
Honnibal, M., Kummerfeld, J.K., Curran, J.R.: Morphological analysis can improve a CCG parser for English. In: Proceedings of Coling 2010, pp. 445–453 (2010)
Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging. arXiv:1508.01991
Kadari, R., Zhang, Y., Zhang, W., Liu, T.: CCG supertagging via Bidirectional LSTM-CRF neural architecture. Neurocomputing 283, 31–37 (2018)
Kadari, R., Zhang, Y., Zhang, W., Liu, T.: CCG supertagging with bidirectional long short-term memory networks. Nat. Lang. Eng. 24(1), 77–90 (2018)
Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of ICML 2001, pp. 282–289 (2001)
Lewis, M., Lee, K., Zettlemoyer, L.: LSTM CCG parsing. In: Proceedings of NAACL 2016, pp. 221–231 (2016)
Lewis, M., Steedman, M.: Improved CCG parsing with semi-supervised supertagging. Trans. ACL 2, 327–338 (2014)
Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional LSTM-CNNS-CRF. arXiv:1603.01354
McDonald, R., Pereira, F., Ribarov, K., Hajič, J.: Non-projective dependency parsing using spanning tree algorithms. In: Proceedings of EMNLP 2005, pp. 523–530 (2005)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of NIPS 2013, pp. 3111–3119 (2013)
Nivre, J., Hall, J., Nilsson, J.: MaltParser: a data-driven parser-generator for dependency parsing. In: Proceedings of LREC 2006, pp. 2216–2219 (2006)
Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013)
Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of EMNLP 2014, pp. 1532–1543 (2014)
Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)
Steedman, M.: Surface Structure and Interpretation. MIT Press, Cambridge (1996)
Steedman, M.: The Syntactic Process. MIT Press, Cambridge (2000)
Steedman, M., Baldridge, J.: Combinatory categorial grammar. In: Non-transformational Syntax: Formal and Explicit Models of Grammar, pp. 181–224. Wiley-Blackwell (2011)
Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4(2), 26–31 (2012)
Turian, J., Ratinov, L., Bengio, Y.: Word representations: a simple and general method for semi-supervised learning. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pp. 384–394 (2010)
Vaswani, A., Bisk, Y., Sagae, K., Musa, R.: Supertagging with LSTMs. In: Proceedings of NAACL 2016, pp. 232–237 (2016)
Wu, H., Zhang, J., Zong, C.: A dynamic window neural network for CCG supertagging. In: Proceedings of AAAI 2017, pp. 3337–3343 (2017)
Xu, W.: LSTM shift-reduce CCG parsing. In: Proceedings of EMNLP 2016, pp. 1754–1764 (2016)
Xu, W., Auli, M., Clark, S.: CCG supertagging with a recurrent neural network. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics, vol. 2, pp. 250–255 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Nature Switzerland AG
About this paper
Cite this paper
Lê, L.N., Haralambous, Y. (2023). CCG Supertagging Using Morphological and Dependency Syntax Information. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2019. Lecture Notes in Computer Science, vol 13451. Springer, Cham. https://doi.org/10.1007/978-3-031-24337-0_43
Download citation
DOI: https://doi.org/10.1007/978-3-031-24337-0_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-24336-3
Online ISBN: 978-3-031-24337-0
eBook Packages: Computer ScienceComputer Science (R0)