Russian Language Datasets in the Digital Humanities Domain and Their Evaluation with Word Embeddings | SpringerLink
Skip to main content

Russian Language Datasets in the Digital Humanities Domain and Their Evaluation with Word Embeddings

  • Conference paper
  • First Online:
Computational Linguistics and Intelligent Text Processing (CICLing 2019)

Abstract

In this paper, we present Russian language datasets in the digital humanities domain for the evaluation of word embedding techniques or similar language modeling and feature learning algorithms. The datasets are split into two task types, word intrusion and word analogy, and contain 31362 task units in total. The characteristics of the tasks and datasets are that they build upon small, domain-specific corpora, and that the datasets contain a high number of named entities. The datasets were created manually for two fantasy novel book series (“A Song of Ice and Fire” and “Harry Potter”). We provide baseline evaluations with popular word embedding models trained on the book corpora for the given tasks, both for the Russian and English language versions of the datasets. Finally, we compare and analyze the results and discuss specifics of Russian language with regards to the problem setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/DenisRomashov/nlp2018_hp_asoif_rus.

  2. 2.

    https://github.com/ishutov/nlp2018_hp_asoif_rus.

  3. 3.

    github.com/ishutov/nlp2018_hp_asoif_rus/blob/master/Results.md.

  4. 4.

    github.com/DenisRomashov/nlp2018_hp_asoif_rus/blob/master/RESULTS.md.

  5. 5.

    Using this toolkit: tech.yandex.ru/mystem.

  6. 6.

    size=300, -negative=0, sg=1, hs=1, iter=15.

  7. 7.

    size=300, -negative=0, sg=1, hs=1, iter=15, -window=12.

  8. 8.

    https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md.

References

  1. Harris, Z.: Distributional structure. Word 10(2–3), 146–162 (1954)

    Article  Google Scholar 

  2. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  3. Herbelot, A.: Mr. Darcy and Mr. Toad, gentlemen: distributional names and their kinds. In: Proceedings of the 11th International Conference on Computational Semantics, pp. 151–161 (2015)

    Google Scholar 

  4. Boleda, G., Padó, S., Gupta, A.: Instances and concepts in distributional space. In: 2017 EACL, Valencia, Spain, 3–7 April 2017, Volume 2: Short Papers, pp. 79–85 (2017)

    Google Scholar 

  5. Wohlgenannt, G., Chernyak, E., Ilvovsky, D., Barinova, A., Mouromtsev, D.: Relation extraction datasets in the digital humanities domain and their evaluation with word embeddings. In: CICLING 2018. Volume upcoming of Lecture Notes in Computer Science., Hanoi, Vietnam, Springer (2018). upcoming

    Google Scholar 

  6. Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, Valletta, Malta, ELRA, pp. 45–50 (2010)

    Google Scholar 

  7. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. arXiv preprint arXiv:1607.04606 (2016)

  8. Ghannay, S., Favre, B., Estève, Y., Camelin, N.: Word embedding evaluation and combination. In: Proceedings of the LREC 2016, Paris, France, ELRA (2016)

    Google Scholar 

  9. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  10. Kutuzov, A., Kuzmenko, E.: WebVectors: a toolkit for building web interfaces for vector semantic models. In: Ignatov, D.I., et al. (eds.) AIST 2016. CCIS, vol. 661, pp. 155–161. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52920-2_15

    Chapter  Google Scholar 

  11. Panchenko, A., Loukachevitch, N.V., Ustalov, D., Paperno, D., Meyer, C., Konstantinova, N.: RUSSE: the first workshop on Russian semantic similarity. CoRR abs/1803.05820 (2015)

    Google Scholar 

  12. Finkelstein, L., et al.: Placing search in context: the concept revisited. In: Proceedings of the 10th International Conference of the World Wide Web, pp. 406–414. ACM (2001)

    Google Scholar 

  13. Bruni, E., Tran, N.K., Baroni, M.: Multimodal distributional semantics. J. Artif. Int. Res. 49(1), 1–47 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Gladkova, A., Drozd, A., Matsuoka, S.: Analogy-based detection of morphological and semantic relations with word embeddings: what works and what doesn’t. In: SRW@HLT-NAACL, pp. 8–15. ACL (2016)

    Google Scholar 

  15. Sahlgren, M., Lenci, A.: The effects of data size and frequency range on distributional semantic models. In: EMNLP, pp. 975–980. ACL (2016)

    Google Scholar 

  16. Boleda, G., Padó, S., Pham, N.T., Baroni, M.: Living a discrete life in a continuous world: reference in cross-modal entity tracking. In: IWCS 2017–12th International Conference on Computational Semantics – Short papers (2017)

    Google Scholar 

  17. Elson, D.K., Dames, N., McKeown, K.R.: Extracting social networks from literary fiction. In: Proceedings of the 48th Annual Meeting of the ACL (ACL 2010), pp. 138–147. Association for Computational Linguistics, Stroudsburg, PA, USA (2010)

    Google Scholar 

  18. Jayannavar, P., Agarwal, A., Ju, M., Rambow, O.: Validating literary theories using automatic social network extraction. In: CLFL@ NAACL-HLT, pp. 32–41 (2015)

    Google Scholar 

  19. Vala, H., Jurgens, D., Piper, A., Ruths, D.: Mr. Bennet, his coachman, and the archbishop walk into a bar but only one of them gets recognized: on the difficulty of detecting characters in literary texts. In: Màrquez, L.E.A., ed.: EMNLP, pp. 769–774. ACL (2015)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Government of the Russian Federation (Grant 074-U01) through the ITMO Fellowship and Professorship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Wohlgenannt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wohlgenannt, G., Babushkin, A., Romashov, D., Ukrainets, I., Maskaykin, A., Shutov, I. (2023). Russian Language Datasets in the Digital Humanities Domain and Their Evaluation with Word Embeddings. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2019. Lecture Notes in Computer Science, vol 13451. Springer, Cham. https://doi.org/10.1007/978-3-031-24337-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24337-0_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24336-3

  • Online ISBN: 978-3-031-24337-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics