Detection and Analysis of Drug Non-compliance in Internet Fora Using Information Retrieval Approaches | SpringerLink
Skip to main content

Detection and Analysis of Drug Non-compliance in Internet Fora Using Information Retrieval Approaches

  • Conference paper
  • First Online:
Computational Linguistics and Intelligent Text Processing (CICLing 2019)

Abstract

In the health-related field, drug non-compliance situations happen when patients do not follow their prescriptions and do actions which lead to potentially harmful situations. Although such situations are dangerous, patients usually do not report them to their physicians. Hence, it is necessary to study other sources of information. We propose to study online health fora with information retrieval methods in order to identify messages that contain drug non-compliance information. Exploitation of information retrieval methods permits to detect non-compliance messages with up to 0.529 F-measure, compared to 0.824 F-measure reached with supervized machine learning methods. For some fine-grained categories and on new data, it shows up to 0.70 Precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://forum.doctissimo.fr.

  2. 2.

    http://www.allodocteur.fr.

  3. 3.

    http://ma-sante.net.

  4. 4.

    http://www.lesdiabetiques.com.

  5. 5.

    http://www.theriaque.org.

  6. 6.

    http://base-donnees-publique.medicaments.gouv.fr.

  7. 7.

    https://www.ameli.fr/l-assurance-maladie/statistiques-et-publications/donnees-statistiques/medicament/medic-am/medic-am-mensuel-2017.php.

References

  1. Bigeard, E., Grabar, N., Thiessard, F.: Typology of drug misuse created from information available in health fora. In: MIE 2018, pp. 1–5 (2018)

    Google Scholar 

  2. Gauducheau, N.: La communication des émotions dans les échanges médiatisés par ordinateur: bilan et perspectives. Bulletin de psychologie, pp. 389–404 (2008)

    Google Scholar 

  3. Louis, A.: Natural language processing for social media. Comput. Linguist. 42, 833–836 (2016)

    Article  Google Scholar 

  4. Collier, N.: Towards cross-lingual alerting for bursty epidemic events. J. Biomed. Semant. 2 (2011)

    Google Scholar 

  5. Lejeune, G., Brixtel, R., Lecluze, C., Doucet, A., Lucas, N.: Added-value of automatic multilingual text analysis for epidemic surveillance. In: Artificial Intelligence in Medicine (AIME) (2013)

    Google Scholar 

  6. Tapi Nzali, M.: Analyse des médias sociaux de santé pour évaluer la qualité de vie des patientes atteintes d’un cancer du sein. Thèse de doctorat, Université de Montpellier, Montpellier, France (2017)

    Google Scholar 

  7. Morlane-Hondère, F., Grouin, C., Zweigenbaum, P.: Identification of drug-related medical conditions in social media. In: LREC, pp. 1–7 (2016)

    Google Scholar 

  8. Kalyanam, J., Katsuki, T., Lanckriet, G.R.G., Mackey, T.K.: Exploring trends of nonmedical use of prescription drugs and polydrug abuse in the twittersphere using unsupervised machine learning. Addict. Behav. 65, 289–295 (2017)

    Article  Google Scholar 

  9. Cameron, D., et al.: PREDOSE: a semantic web platform for drug abuse epidemiology using social media. J. Biomed. Inform. 46, 985–997 (2013)

    Article  Google Scholar 

  10. Skrbo, A., Begović, B., Skrbo, S.: Classification of drugs using the ATC system (anatomic, therapeutic, chemical classification) and the latest changes. Med. Arh. 58, 138–41 (2004)

    Google Scholar 

  11. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur. 20, 37–46 (1960)

    Article  Google Scholar 

  12. Landis, J., Koch, G.: The measurement of observer agreement for categorical data. Biometrics 33, 159–174 (1977)

    Article  MATH  Google Scholar 

  13. Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: ICNMLP, Manchester, UK, pp. 44–49 (1994)

    Google Scholar 

  14. Strohman, T., Metzler, D., Turtle, H., Croft, W.B.: Indri: a language-model based search engine for complex queries. In: Proceedings of the International Conference on Intelligent Analysis (2005)

    Google Scholar 

  15. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  16. John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers. In: Kaufmann, M. (ed.) Eleventh Conference on Uncertainty in Artificial Intelligence, San Mateo, pp. 338–345 (1995)

    Google Scholar 

  17. McCallum, A., Nigam, K.: A comparison of event models for Naive Bayes text classification. In: AAAI Workshop on Learning for Text Categorization, Madison, Wisconsin (1998)

    Google Scholar 

  18. Quinlan, J.: C4.5 Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  19. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  20. Landwehr, N., Hall, M., Frank, E.: Logistic model trees. Mach. Learn. 95, 161–205 (2005)

    Article  MATH  Google Scholar 

  21. Salton, G., McGill, M.J.: Retrieval refinements, pp. 199–206 (1983)

    Google Scholar 

Download references

Acknowledgments

This work has been performed as part of the DRUGSSAFE project funded by the ANSM, France and of the MIAM project funded by the ANR, France within the reference ANR-16-CE23-0012. We thank both programs for their funding. We would like also to thank the annotators who helped us with the manual annotation of misuses, Bruno Thiao Layel for extracting the corpus, Vianney Jouhet and Bruno Thiao Layel for building the list with drugs names, and The-Hien Dao for the set of disorders exploited. Finally, we thank the whole ERIAS team for the discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Bigeard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bigeard, S., Thiessard, F., Grabar, N. (2023). Detection and Analysis of Drug Non-compliance in Internet Fora Using Information Retrieval Approaches. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2019. Lecture Notes in Computer Science, vol 13451. Springer, Cham. https://doi.org/10.1007/978-3-031-24337-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24337-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24336-3

  • Online ISBN: 978-3-031-24337-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics