Abstract
The Quality-of-Service (QoS) aspects of Web service has gained popularity in the field of service computing. QoS-oriented Web service composition is a distributed model to construct new web service on top of existing primitive or other composite web services with QoS guarantees. A major challenge in this field is that the QoS data of candidate services are with run-time fluctuations and thus difficult to predict. Traditional approaches in this direction tended to address the challenge by statistics, prediction and neural network-based models. A major limitation of these methods lies in that they ignore outliers data in the historical QoS data, in terms of inconsistencies, errors, shifts, corruptions, etc. In this work, instead, we consider outliers in QoS series to be non-neglectable, and propose an outlier-tolerable and predictive approach to service composition through leveraging a joint estimation-based outlier detection method and a niched genetic algorithm. To validate the effectiveness of our proposed method, we conduct extensive case studies based on different outlier conditions, and the experimental results show that our method is superior to existing ones.
This work is supported by National Science Foundations with No. 62172062 and No. 62162036, and Chongqing Normal University Foundation with No. 22XLB016. Yunni Xia is the first corresponding author (email: xiayunni@hotmail.com). Peng Chen is the second corresponding author (email: chenpeng@mail.xhu.edu.cn).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wu, Q., Ishikawa, F., Zhu, Q., Shin, D.H.: QoS-aware multigranularity service composition: modeling and optimization. IEEE Trans. Syst. Man Cybern. Syst. 46(11), 1565–1577 (2016). https://doi.org/10.1109/TSMC.2015.2503384
Lu, H., Liu, Y., Fei, Z., Guan, C.: An outlier detection algorithm based on cross-correlation analysis for time series dataset. IEEE Access 6, 53593–53610 (2018). https://doi.org/10.1109/ACCESS.2018.2870151
Wang, W., Wang, L., Lu, W.: An intelligent QoS identification for untrustworthy web services via two-phase neural networks. IEEE Int. Conf. Web Serv. (ICWS) 2016, 139–146 (2016). https://doi.org/10.1109/ICWS.2016.26
Sun, X., et al.: A fluctuation-aware approach for predictive web service composition. IEEE Int. Conf. Serv. Comput. (SCC) 2018, 121–128 (2018). https://doi.org/10.1109/SCC.2018.00023
Yahyaoui, H., et al.: A novel scalable representative-based forecasting approach of service quality. Computing 102, 2471–2500 (2020)
Wang, H., Zheng, X.: An online prediction approach for dynamic QoS. IEEE Int. Conf. Serv. Comput. (SCC) 2016, 852–855 (2016). https://doi.org/10.1109/SCC.2016.122
Wang, X., Zhu, J., Shen, Y.: Network-aware QoS prediction for service composition using geolocation. IEEE Trans. Serv. Comput. 8(4), 630–643 (2015). https://doi.org/10.1109/TSC.2014.2320271
Li, B., et al.: QoS Prediction based on temporal information and request context. Serv. Oriented Comput. Appl. 15(3), 231–244 (2021)
Li, J., Lin, J.: A probability distribution detection based hybrid ensemble QoS prediction approach. Inf. Sci. 519, 352–353 (2020)
Zheng, H., Yang, J., Zhao, W., Bouguettaya, A.: QoS analysis for web service compositions based on probabilistic QoS. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 47–61. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25535-9_4
Wang, P., Liu, T., Zhan, Y., Du, X.: A Bayesian Nash equilibrium of QoS-aware web service composition. IEEE Int. Conf. Web Serv. (ICWS) 2017, 676–683 (2017). https://doi.org/10.1109/ICWS.2017.81
Hwang, S., Hsu, C., Lee, C.: Service selection for web services with probabilistic QoS. IEEE Trans. Serv. Comput. 8(3), 467–480 (2015). https://doi.org/10.1109/TSC.2014.2338851
Hwang, S., Wang, H., Tang, J., et al.: A probabilistic approach to modeling and estimating the QoS of web-services-based workflows. Inf. Sci. Int. J. 177(23), 5484–5503 (2007)
Yu, Q., Zheng, Z., Wang, H.: Trace norm regularized matrix factorization for service recommendation. In: 2013 IEEE 20th International Conference on Web Services, pp. 34–41 (2013). https://doi.org/10.1109/ICWS.2013.15
Zhu, X., et al.: Similarity-maintaining privacy preservation and location-aware low-rank matrix factorization for QoS prediction based web service recommendation. IEEE Trans. Serv. Comput. 14(3), 889–902 (2021). https://doi.org/10.1109/TSC.2018.2839741
Wu, H., Zhang, Z., Luo, J., Yue, K., Hsu, C.H.: Multiple attributes QoS prediction via deep neural model with contexts. IEEE Trans. Serv. Comput. 14(4), 1084–1096 (2021). https://doi.org/10.1109/TSC.2018.2859986
Xu, M., Han, M.: Adaptive elastic echo state network for multivariate time series prediction. IEEE Trans. Cybern. 46(10), 2173–2183 (2016). https://doi.org/10.1109/TCYB.2015.2467167
Rokhman, N.: A survey on mixed-attribute outlier detection methods. CommIT Commun. Inf. Technol. J. 13(1), 39–44 (2019)
Rotman, M., Reis, I., Poznanski, D., Wolf, L.: Detect the unexpected: novelty detection in large astrophysical surveys using fisher vectors. In: Proceedings of 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering, and Knowledge Management, pp. 124–134 (2019)
Cook, A. A., Misirli, G., Fan, Z.: Anomaly detection for IoT time-series data: a survey. IEEE Internet Things J. 7(7), 6481–6494 (2020)
Li, Z., Zhao, Y., Hu, X., Botta, N., Ionescu, C., Chen, G.: ECOD: unsupervised outlier detection using empirical cumulative distribution functions. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2022.3159580
Moustafa, N., Hu, J., Slay, J.: A holistic review of network anomaly detection systems: a comprehensive survey. J. Netw. Comput. Appl. 128, 33–55 (2019)
Gupta, M., Gao, J., Aggarwal, C.C., Han, J.: Outlier detection for temporal data: a survey. IEEE Trans. Knowl. Data Eng. 26(9), 2250–2267 (2014). https://doi.org/10.1109/TKDE.2013.184
Yu, Y., et al.: Time series outlier detection based on sliding window prediction. J. Comput. Appl. 2014(2), 2217–2220 (2014)
Liu, Y., Lu, H.: Outlier detection algorithm based on SOM neural network for spatial series dataset. In: 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI), pp. 162–168 (2018). https://doi.org/10.1109/ICACI.2018.8377600
Yousef, W.A., Traor, I., Briguglio, W.: UN-AVOIDS: unsupervised and nonparametric approach for visualizing outliers and invariant detection scoring. IEEE Trans. Inf. Forensics Secur. 16, 5195–5210 (2021). https://doi.org/10.1109/TIFS.2021.3125608
Chen, C., Liu, L.: Joint estimation of model parameters and outlier effects in time series. J. Am. Stat. Assoc. 88(421), 284C97 (1993). https://doi.org/10.2307/2290724
Sun, X., Wang, S., Xia, Y., Zheng, W.: Predictive-trend-aware composition of web services with time-varying quality-of-service. IEEE Access 8, 1910–1921 (2020). https://doi.org/10.1109/ACCESS.2019.2962703
Chen, R., Wang, X.: Situation-aware orchestration of resource allocation and task scheduling for collaborative rendering in IoT visualization. IEEE Transactions on Sustainable Computing. https://doi.org/10.1109/TSUSC.2022.3165016
Somasundaram, K.S.G.A., Saranya, A.M.N.N., Prabha, R., Babu, D.V.: A novel hybrid GAACO algorithm for cloud computing using energy aware load balance scheduling. In: 2022 International Conference on Computer Communication and Informatics (ICCCI), pp. 1–5 (2022). https://doi.org/10.1109/ICCCI54379.2022.9740795
Zhao, Z., Lee, W.C., Shin, Y., Song, K.: An optimal power scheduling method for demand response in home energy management system. IEEE Trans. Smart Grid 4(3), 1391–1400 (2013). https://doi.org/10.1109/TSG.2013.2251018
Yang, Y., Niu, Y., Lam, H.K.: Sliding-mode control for interval type-2 fuzzy systems: event-triggering WTOD scheme. IEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB.2022.3163452
Ben Othman, M.T., Abdel-Azim, G.: Multiple sequence alignment based on genetic algorithms with new chromosomes representation. In: 2012 16th IEEE Mediterranean Electrotechnical Conference, p. 1030–1033 (2012)
Zheng, Z., Zhang, Y., Lyu, M.R.: Investigating QoS of real-world web services. IEEE Trans. Serv. Comput. 7(1), 32–39 (2014). https://doi.org/10.1109/TSC.2012.34
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sun, X. et al. (2022). A Novel Outlier-Tolerable and Predictive Approach to Web Service Composition. In: Zhang, Y., Zhang, LJ. (eds) Web Services – ICWS 2022. ICWS 2022. Lecture Notes in Computer Science, vol 13736. Springer, Cham. https://doi.org/10.1007/978-3-031-23579-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-23579-5_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-23578-8
Online ISBN: 978-3-031-23579-5
eBook Packages: Computer ScienceComputer Science (R0)