A Novel Outlier-Tolerable and Predictive Approach to Web Service Composition | SpringerLink
Skip to main content

A Novel Outlier-Tolerable and Predictive Approach to Web Service Composition

  • Conference paper
  • First Online:
Web Services – ICWS 2022 (ICWS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13736))

Included in the following conference series:

  • 485 Accesses

Abstract

The Quality-of-Service (QoS) aspects of Web service has gained popularity in the field of service computing. QoS-oriented Web service composition is a distributed model to construct new web service on top of existing primitive or other composite web services with QoS guarantees. A major challenge in this field is that the QoS data of candidate services are with run-time fluctuations and thus difficult to predict. Traditional approaches in this direction tended to address the challenge by statistics, prediction and neural network-based models. A major limitation of these methods lies in that they ignore outliers data in the historical QoS data, in terms of inconsistencies, errors, shifts, corruptions, etc. In this work, instead, we consider outliers in QoS series to be non-neglectable, and propose an outlier-tolerable and predictive approach to service composition through leveraging a joint estimation-based outlier detection method and a niched genetic algorithm. To validate the effectiveness of our proposed method, we conduct extensive case studies based on different outlier conditions, and the experimental results show that our method is superior to existing ones.

This work is supported by National Science Foundations with No. 62172062 and No. 62162036, and Chongqing Normal University Foundation with No. 22XLB016. Yunni Xia is the first corresponding author (email: xiayunni@hotmail.com). Peng Chen is the second corresponding author (email: chenpeng@mail.xhu.edu.cn).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6291
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7864
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wu, Q., Ishikawa, F., Zhu, Q., Shin, D.H.: QoS-aware multigranularity service composition: modeling and optimization. IEEE Trans. Syst. Man Cybern. Syst. 46(11), 1565–1577 (2016). https://doi.org/10.1109/TSMC.2015.2503384

  2. Lu, H., Liu, Y., Fei, Z., Guan, C.: An outlier detection algorithm based on cross-correlation analysis for time series dataset. IEEE Access 6, 53593–53610 (2018). https://doi.org/10.1109/ACCESS.2018.2870151

    Article  Google Scholar 

  3. Wang, W., Wang, L., Lu, W.: An intelligent QoS identification for untrustworthy web services via two-phase neural networks. IEEE Int. Conf. Web Serv. (ICWS) 2016, 139–146 (2016). https://doi.org/10.1109/ICWS.2016.26

    Article  Google Scholar 

  4. Sun, X., et al.: A fluctuation-aware approach for predictive web service composition. IEEE Int. Conf. Serv. Comput. (SCC) 2018, 121–128 (2018). https://doi.org/10.1109/SCC.2018.00023

    Article  Google Scholar 

  5. Yahyaoui, H., et al.: A novel scalable representative-based forecasting approach of service quality. Computing 102, 2471–2500 (2020)

    Google Scholar 

  6. Wang, H., Zheng, X.: An online prediction approach for dynamic QoS. IEEE Int. Conf. Serv. Comput. (SCC) 2016, 852–855 (2016). https://doi.org/10.1109/SCC.2016.122

    Article  Google Scholar 

  7. Wang, X., Zhu, J., Shen, Y.: Network-aware QoS prediction for service composition using geolocation. IEEE Trans. Serv. Comput. 8(4), 630–643 (2015). https://doi.org/10.1109/TSC.2014.2320271

  8. Li, B., et al.: QoS Prediction based on temporal information and request context. Serv. Oriented Comput. Appl. 15(3), 231–244 (2021)

    Google Scholar 

  9. Li, J., Lin, J.: A probability distribution detection based hybrid ensemble QoS prediction approach. Inf. Sci. 519, 352–353 (2020)

    Article  MathSciNet  Google Scholar 

  10. Zheng, H., Yang, J., Zhao, W., Bouguettaya, A.: QoS analysis for web service compositions based on probabilistic QoS. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 47–61. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25535-9_4

    Chapter  Google Scholar 

  11. Wang, P., Liu, T., Zhan, Y., Du, X.: A Bayesian Nash equilibrium of QoS-aware web service composition. IEEE Int. Conf. Web Serv. (ICWS) 2017, 676–683 (2017). https://doi.org/10.1109/ICWS.2017.81

    Article  Google Scholar 

  12. Hwang, S., Hsu, C., Lee, C.: Service selection for web services with probabilistic QoS. IEEE Trans. Serv. Comput. 8(3), 467–480 (2015). https://doi.org/10.1109/TSC.2014.2338851

  13. Hwang, S., Wang, H., Tang, J., et al.: A probabilistic approach to modeling and estimating the QoS of web-services-based workflows. Inf. Sci. Int. J. 177(23), 5484–5503 (2007)

    MATH  Google Scholar 

  14. Yu, Q., Zheng, Z., Wang, H.: Trace norm regularized matrix factorization for service recommendation. In: 2013 IEEE 20th International Conference on Web Services, pp. 34–41 (2013). https://doi.org/10.1109/ICWS.2013.15

  15. Zhu, X., et al.: Similarity-maintaining privacy preservation and location-aware low-rank matrix factorization for QoS prediction based web service recommendation. IEEE Trans. Serv. Comput. 14(3), 889–902 (2021). https://doi.org/10.1109/TSC.2018.2839741

  16. Wu, H., Zhang, Z., Luo, J., Yue, K., Hsu, C.H.: Multiple attributes QoS prediction via deep neural model with contexts. IEEE Trans. Serv. Comput. 14(4), 1084–1096 (2021). https://doi.org/10.1109/TSC.2018.2859986

  17. Xu, M., Han, M.: Adaptive elastic echo state network for multivariate time series prediction. IEEE Trans. Cybern. 46(10), 2173–2183 (2016). https://doi.org/10.1109/TCYB.2015.2467167

    Article  Google Scholar 

  18. Rokhman, N.: A survey on mixed-attribute outlier detection methods. CommIT Commun. Inf. Technol. J. 13(1), 39–44 (2019)

    Google Scholar 

  19. Rotman, M., Reis, I., Poznanski, D., Wolf, L.: Detect the unexpected: novelty detection in large astrophysical surveys using fisher vectors. In: Proceedings of 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering, and Knowledge Management, pp. 124–134 (2019)

    Google Scholar 

  20. Cook, A. A., Misirli, G., Fan, Z.: Anomaly detection for IoT time-series data: a survey. IEEE Internet Things J. 7(7), 6481–6494 (2020)

    Google Scholar 

  21. Li, Z., Zhao, Y., Hu, X., Botta, N., Ionescu, C., Chen, G.: ECOD: unsupervised outlier detection using empirical cumulative distribution functions. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2022.3159580

  22. Moustafa, N., Hu, J., Slay, J.: A holistic review of network anomaly detection systems: a comprehensive survey. J. Netw. Comput. Appl. 128, 33–55 (2019)

    Article  Google Scholar 

  23. Gupta, M., Gao, J., Aggarwal, C.C., Han, J.: Outlier detection for temporal data: a survey. IEEE Trans. Knowl. Data Eng. 26(9), 2250–2267 (2014). https://doi.org/10.1109/TKDE.2013.184

    Article  Google Scholar 

  24. Yu, Y., et al.: Time series outlier detection based on sliding window prediction. J. Comput. Appl. 2014(2), 2217–2220 (2014)

    Google Scholar 

  25. Liu, Y., Lu, H.: Outlier detection algorithm based on SOM neural network for spatial series dataset. In: 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI), pp. 162–168 (2018). https://doi.org/10.1109/ICACI.2018.8377600

  26. Yousef, W.A., Traor, I., Briguglio, W.: UN-AVOIDS: unsupervised and nonparametric approach for visualizing outliers and invariant detection scoring. IEEE Trans. Inf. Forensics Secur. 16, 5195–5210 (2021). https://doi.org/10.1109/TIFS.2021.3125608

    Article  Google Scholar 

  27. Chen, C., Liu, L.: Joint estimation of model parameters and outlier effects in time series. J. Am. Stat. Assoc. 88(421), 284C97 (1993). https://doi.org/10.2307/2290724

  28. Sun, X., Wang, S., Xia, Y., Zheng, W.: Predictive-trend-aware composition of web services with time-varying quality-of-service. IEEE Access 8, 1910–1921 (2020). https://doi.org/10.1109/ACCESS.2019.2962703

    Article  Google Scholar 

  29. Chen, R., Wang, X.: Situation-aware orchestration of resource allocation and task scheduling for collaborative rendering in IoT visualization. IEEE Transactions on Sustainable Computing. https://doi.org/10.1109/TSUSC.2022.3165016

  30. Somasundaram, K.S.G.A., Saranya, A.M.N.N., Prabha, R., Babu, D.V.: A novel hybrid GAACO algorithm for cloud computing using energy aware load balance scheduling. In: 2022 International Conference on Computer Communication and Informatics (ICCCI), pp. 1–5 (2022). https://doi.org/10.1109/ICCCI54379.2022.9740795

  31. Zhao, Z., Lee, W.C., Shin, Y., Song, K.: An optimal power scheduling method for demand response in home energy management system. IEEE Trans. Smart Grid 4(3), 1391–1400 (2013). https://doi.org/10.1109/TSG.2013.2251018

    Article  Google Scholar 

  32. Yang, Y., Niu, Y., Lam, H.K.: Sliding-mode control for interval type-2 fuzzy systems: event-triggering WTOD scheme. IEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB.2022.3163452

  33. Ben Othman, M.T., Abdel-Azim, G.: Multiple sequence alignment based on genetic algorithms with new chromosomes representation. In: 2012 16th IEEE Mediterranean Electrotechnical Conference, p. 1030–1033 (2012)

    Google Scholar 

  34. Zheng, Z., Zhang, Y., Lyu, M.R.: Investigating QoS of real-world web services. IEEE Trans. Serv. Comput. 7(1), 32–39 (2014). https://doi.org/10.1109/TSC.2012.34

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Chen or Yunni Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, X. et al. (2022). A Novel Outlier-Tolerable and Predictive Approach to Web Service Composition. In: Zhang, Y., Zhang, LJ. (eds) Web Services – ICWS 2022. ICWS 2022. Lecture Notes in Computer Science, vol 13736. Springer, Cham. https://doi.org/10.1007/978-3-031-23579-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23579-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23578-8

  • Online ISBN: 978-3-031-23579-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics