BiLSTM Deep Learning Model for Heart Problems Detection | SpringerLink
Skip to main content

BiLSTM Deep Learning Model for Heart Problems Detection

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2022)

Abstract

Deep learning architectures find applications where analysis of complex data inputs is demanding and regular neural networks may have problems. There are many types of deep learning models, however the most important to fit architecture and training model to the input data. In this article we propose a model of deep learning based on architecture in which we use BiLSTM neural network. Proposed model is trained by using Adam algorithm. For the research experiment we have examined also other latest algorithms to select the best configuration of proposed model. Results show that our proposed BiLSTM deep learning neural network archived over 99% of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xu, G., Meng, Y., Qiu, X., Yu, Z., Wu, X.: “Sentiment analysis of comment texts based on bilstm,” Ieee Access, vol. 7, pp. 51 522–51 532 (2019)

    Google Scholar 

  2. Pogiatzis, A., Samakovitis, G.: Using bilstm networks for context-aware deep sensitivity labelling on conversational data. Appl. Sci. 10(24), 8924 (2020)

    Article  Google Scholar 

  3. Lu, W., Li, J., Wang, J., Qin, L.: A cnn-bilstm-am method for stock price prediction. Neural Comput. Appl. 33(10), 4741–4753 (2021)

    Article  Google Scholar 

  4. Nowicki, R.K., Grzanek, K., Hayashi, Y.: “Rough support vector machine for classification with interval and incomplete data. J. Artif. Intell. Soft Comput. Res. 10 2020

    Google Scholar 

  5. Niksa-Rynkiewicz, T., Szewczuk-Krypa, N., Witkowska, A., Cpałka, K., Zalasiński, M., Cader, A.: “Monitoring regenerative heat exchanger in steam power plant by making use of the recurrent neural network. J. Artif. Intell. Soft Comput. Res. 11 (2021)

    Google Scholar 

  6. Jagvaral, B., Lee, W.-K., Roh, J.-S., Kim, M.-S., Park, Y.-T.: Path-based reasoning approach for knowledge graph completion using cnn-bilstm with attention mechanism. Expert Syst. Appl. 142, 112960 (2020)

    Article  Google Scholar 

  7. Liu, K., Gao, W., Huang, Q.: Automatic modulation recognition based on a dcn-bilstm network. Sensors 21(5), 1577 (2021)

    Article  Google Scholar 

  8. Xie, W., Wang, J., Xing, C., Guo, S., Guo, M., Zhu, L.: Variational autoencoder bidirectional long and short-term memory neural network soft-sensor model based on batch training strategy. IEEE Trans. Industr. Inf. 17(8), 5325–5334 (2020)

    Article  Google Scholar 

  9. Nafea, O., Abdul, W., Muhammad, G., Alsulaiman, M.: Sensor-based human activity recognition with spatio-temporal deep learning. Sensors 21(6), 2141 (2021)

    Article  Google Scholar 

  10. Zhao, C., Huang, X., Li, Y., Yousaf Iqbal, M.: “A double-channel hybrid deep neural network based on cnn and bilstm for remaining useful life prediction.” Sensors 20(24) 7109 (2020)

    Google Scholar 

  11. Jeong, J.-H., Shim, K.-H., Kim, D.-J., Lee, S.-W.: Brain-controlled robotic arm system based on multi-directional cnn-bilstm network using eeg signals. IEEE Trans. Neural Syst. Rehabil. Eng. 28(5), 1226–1238 (2020)

    Article  Google Scholar 

  12. Beritelli, F., Capizzi, G., Sciuto, G.L., Napoli, C., Woźniak, M.: A novel training method to preserve generalization of rbpnn classifiers applied to ecg signals diagnosis. Neural Netw. 108, 331–338 (2018)

    Article  Google Scholar 

  13. Moody, G.B., Mark, R.G.: The impact of the mit-bih arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)

    Article  Google Scholar 

  14. Zhai, X., Tin, C.: “Automated ecg classification using dual heartbeat coupling based on convolutional neural network.” IEEE Access. 6 27 465–27 472 (2018)

    Google Scholar 

  15. Huang, J., Chen, B., Yao, B., He, W.: “Ecg arrhythmia classification using stft-based spectrogram and convolutional neural network.” IEEE Access 7 92 871–92 880 (2019)

    Google Scholar 

  16. Kiranyaz, S., Ince, T., Gabbouj, M.: Real-time patient-specific ecg classification by 1-d convolutional neural networks. IEEE Trans. Biomed. Eng. 63(3), 664–675 (2015)

    Article  Google Scholar 

  17. Oh, S.L., Ng, E.Y., San Tan, R., Acharya, U.R.: “Automated diagnosis of arrhythmia using combination of cnn and lstm techniques with variable length heart beats.” Comput. Biol. Med. 102 278–287 (2018)

    Google Scholar 

  18. Acharya, U.R.: “A deep convolutional neural network model to classify heartbeats.” Comput. Biol. Med. 89 389–396 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Woźniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Siłka, J., Wieczorek, M., Kobielnik, M., Woźniak, M. (2023). BiLSTM Deep Learning Model for Heart Problems Detection. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2022. Lecture Notes in Computer Science(), vol 13588. Springer, Cham. https://doi.org/10.1007/978-3-031-23492-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23492-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23491-0

  • Online ISBN: 978-3-031-23492-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics