Abstract
We propose a content-based solar image descriptor for fast retrieving similar images. The method is divided into three main stages: active region detection by using edge detection, representation learning and hash generation. The first step uses morphological operations for active region detection and afterwards Canny edge detection. In the learning step we use an unsupervised convolutional autoencoder in order to obtain the solar image hash. This process reduces hash length more than twelve times compared to the active region image matrix. The process of reducing the hash length is significant in reference to solar image retrieval process, in which we focus on calculating the distances between hashes. The performed experiments proved the efficiency of the proposed approach. The presented method has various potential, not only solar, applications. Moreover, the problem of searching of and retrieving solar flares has a significant impact on many aspects of life on Earth and beyond.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Banda, J.M., Angryk, R.A.: Selection of image parameters as the first step towards creating a cbir system for the solar dynamics observatory. In: 2010 International Conference on Digital Image Computing: Techniques and Applications, pp. 528–534. IEEE (2010)
Banda, J.M., Angryk, R.A.: Large-scale region-based multimedia retrieval for solar images. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 649–661. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07173-2_55
Banda, J.M., Angryk, R.A.: Scalable solar image retrieval with lucene. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 11–17. IEEE (2014)
Boubrahimi, S.F., Aydin, B., Schuh, M.A., Kempton, D., Angryk, R.A., Ma, R.: Spatiotemporal interpolation methods for solar event trajectories. Astrophys. J. Suppl. Ser. 236(1), 23 (2018)
Buckland, M., Gey, F.: The relationship between recall and precision. J. Am. Soc. Inf. Sci. 45(1), 12 (1994)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. (6), 679–698 (1986)
Dougherty, E.R.: An introduction to morphological image processing. In: SPIE, 1992 (1992)
Kavitha, K., Rao, B.T.: Evaluation of distance measures for feature based image registration using alexnet. arXiv preprint arXiv:1907.12921 (2019)
Korytkowski, M., Senkerik, R., Scherer, M.M., Angryk, R.A., Kordos, M., Siwocha, A.: Efficient image retrieval by fuzzy rules from boosting and metaheuristic. J. Artif. Intell. Soft Comput. Res. 10(1), 57–69 (2020)
Kucuk, A., Banda, J.M., Angryk, R.A.: A large-scale solar dynamics observatory image dataset for computer vision applications. Sci. Data 4, 170096 (2017)
Ma, R., Boubrahimi, S.F., Hamdi, S.M., Angryk, R.A.: Solar flare prediction using multivariate time series decision trees. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 2569–2578. IEEE (2017)
Salakhutdinov, R., Hinton, G.: Semantic hashing. Int. J. Approximate Reasoning 50(7), 969–978 (2009). Special Section on Graphical Models and Information Retrieval
Serra, J.: Image analysis and mathematical morphology. Academic Press, Inc. (1983)
Ting, K.M.: Precision and recall. In: Encyclopedia of machine learning. Springer (2011). https://doi.org/10.1007/978-1-4899-7993-3_5050-2
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Grycuk, R., Najgebauer, P., Scherer, R. (2023). Edge Detection-Based Full-Disc Solar Image Hashing. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2022. Lecture Notes in Computer Science(), vol 13589. Springer, Cham. https://doi.org/10.1007/978-3-031-23480-4_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-23480-4_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-23479-8
Online ISBN: 978-3-031-23480-4
eBook Packages: Computer ScienceComputer Science (R0)