Edge Detection-Based Full-Disc Solar Image Hashing | SpringerLink
Skip to main content

Edge Detection-Based Full-Disc Solar Image Hashing

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2022)

Abstract

We propose a content-based solar image descriptor for fast retrieving similar images. The method is divided into three main stages: active region detection by using edge detection, representation learning and hash generation. The first step uses morphological operations for active region detection and afterwards Canny edge detection. In the learning step we use an unsupervised convolutional autoencoder in order to obtain the solar image hash. This process reduces hash length more than twelve times compared to the active region image matrix. The process of reducing the hash length is significant in reference to solar image retrieval process, in which we focus on calculating the distances between hashes. The performed experiments proved the efficiency of the proposed approach. The presented method has various potential, not only solar, applications. Moreover, the problem of searching of and retrieving solar flares has a significant impact on many aspects of life on Earth and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8579
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10724
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Banda, J.M., Angryk, R.A.: Selection of image parameters as the first step towards creating a cbir system for the solar dynamics observatory. In: 2010 International Conference on Digital Image Computing: Techniques and Applications, pp. 528–534. IEEE (2010)

    Google Scholar 

  2. Banda, J.M., Angryk, R.A.: Large-scale region-based multimedia retrieval for solar images. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 649–661. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07173-2_55

    Chapter  Google Scholar 

  3. Banda, J.M., Angryk, R.A.: Scalable solar image retrieval with lucene. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 11–17. IEEE (2014)

    Google Scholar 

  4. Boubrahimi, S.F., Aydin, B., Schuh, M.A., Kempton, D., Angryk, R.A., Ma, R.: Spatiotemporal interpolation methods for solar event trajectories. Astrophys. J. Suppl. Ser. 236(1), 23 (2018)

    Article  Google Scholar 

  5. Buckland, M., Gey, F.: The relationship between recall and precision. J. Am. Soc. Inf. Sci. 45(1), 12 (1994)

    Article  Google Scholar 

  6. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. (6), 679–698 (1986)

    Google Scholar 

  7. Dougherty, E.R.: An introduction to morphological image processing. In: SPIE, 1992 (1992)

    Google Scholar 

  8. Kavitha, K., Rao, B.T.: Evaluation of distance measures for feature based image registration using alexnet. arXiv preprint arXiv:1907.12921 (2019)

  9. Korytkowski, M., Senkerik, R., Scherer, M.M., Angryk, R.A., Kordos, M., Siwocha, A.: Efficient image retrieval by fuzzy rules from boosting and metaheuristic. J. Artif. Intell. Soft Comput. Res. 10(1), 57–69 (2020)

    Article  Google Scholar 

  10. Kucuk, A., Banda, J.M., Angryk, R.A.: A large-scale solar dynamics observatory image dataset for computer vision applications. Sci. Data 4, 170096 (2017)

    Article  Google Scholar 

  11. Ma, R., Boubrahimi, S.F., Hamdi, S.M., Angryk, R.A.: Solar flare prediction using multivariate time series decision trees. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 2569–2578. IEEE (2017)

    Google Scholar 

  12. Salakhutdinov, R., Hinton, G.: Semantic hashing. Int. J. Approximate Reasoning 50(7), 969–978 (2009). Special Section on Graphical Models and Information Retrieval

    Google Scholar 

  13. Serra, J.: Image analysis and mathematical morphology. Academic Press, Inc. (1983)

    Google Scholar 

  14. Ting, K.M.: Precision and recall. In: Encyclopedia of machine learning. Springer (2011). https://doi.org/10.1007/978-1-4899-7993-3_5050-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafał Scherer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grycuk, R., Najgebauer, P., Scherer, R. (2023). Edge Detection-Based Full-Disc Solar Image Hashing. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2022. Lecture Notes in Computer Science(), vol 13589. Springer, Cham. https://doi.org/10.1007/978-3-031-23480-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23480-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23479-8

  • Online ISBN: 978-3-031-23480-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics