Mesh U-Nets for 3D Cardiac Deformation Modeling | SpringerLink
Skip to main content

Abstract

During a cardiac cycle, the heart anatomy undergoes a series of complex 3D deformations, which can be analyzed to diagnose various cardiovascular pathologies including myocardial infarction. While volume-based metrics such as ejection fraction are commonly used in clinical practice to assess these deformations globally, they only provide limited information about localized changes in the 3D cardiac structures. The objective of this work is to develop a novel geometric deep learning approach to capture the mechanical deformation of complete 3D ventricular shapes, offering potential to discover new image-based biomarkers for cardiac disease diagnosis. To this end, we propose the mesh U-Net, which combines mesh-based convolution and pooling operations with U-Net-inspired skip connections in a hierarchical step-wise encoder-decoder architecture, in order to enable accurate and efficient learning directly on 3D anatomical meshes. The proposed network is trained to model both cardiac contraction and relaxation, that is, to predict the 3D cardiac anatomy at the end-systolic phase of the cardiac cycle based on the corresponding anatomy at end-diastole and vice versa. We evaluate our method on a multi-center cardiac magnetic resonance imaging (MRI) dataset of 1021 patients with acute myocardial infarction. We find mean surface distances between the predicted and gold standard anatomical meshes close to the pixel resolution of the underlying images and high similarity in multiple commonly used clinical metrics for both prediction directions. In addition, we show that the mesh U-Net compares favorably to a 3D U-Net benchmark by using 66% fewer network parameters and drastically smaller data sizes, while at the same time improving predictive performance by 14%. We also observe that the mesh U-Net is able to capture subpopulation-specific differences in mechanical deformation patterns between patients with different myocardial infarction types and clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beetz, M., Banerjee, A., Grau, V.: Generating subpopulation-specific biventricular anatomy models using conditional point cloud variational autoencoders. In: Puyol Antón, E., et al. (eds.) STACOM 2021. LNCS, vol. 13131, pp. 75–83. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93722-5_9

    Chapter  Google Scholar 

  2. Beetz, M., Banerjee, A., Grau, V.: Multi-domain variational autoencoders for combined modeling of MRI-based biventricular anatomy and ECG-based cardiac electrophysiology. Front. Physiol., 991 (2022)

    Google Scholar 

  3. Beetz, M., Banerjee, A., Sang, Y., Grau, V.: Combined generation of electrocardiogram and cardiac anatomy models using multi-modal variational autoencoders. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–4 (2022)

    Google Scholar 

  4. Beetz, M., Ossenberg-Engels, J., Banerjee, A., Grau, V.: Predicting 3D cardiac deformations with point cloud autoencoders. In: Puyol Antón, E., et al. (eds.) STACOM 2021. LNCS, vol. 13131, pp. 219–228. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93722-5_24

    Chapter  Google Scholar 

  5. Bello, G.A., et al.: Deep-learning cardiac motion analysis for human survival prediction. Nat. Mach. Intell. 1(2), 95–104 (2019)

    Article  Google Scholar 

  6. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  7. Corral Acero, J., et al.: Understanding and improving risk assessment after myocardial infarction using automated left ventricular shape analysis. JACC: Cardiovasc. Imaging (2022)

    Google Scholar 

  8. Corral Acero, J., et al.: SMOD - data augmentation based on statistical models of deformation to enhance segmentation in 2D cine cardiac MRI. In: Coudière, Y., Ozenne, V., Vigmond, E., Zemzemi, N. (eds.) FIMH 2019. LNCS, vol. 11504, pp. 361–369. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21949-9_39

    Chapter  Google Scholar 

  9. Dalton, D., Lazarus, A., Rabbani, A., Gao, H., Husmeier, D.: Graph neural network emulation of cardiac mechanics. In: Proceedings of the 3rd International Conference on Statistics: Theory and Applications (ICSTA 2021), pp. 127-1-8 (2021)

    Google Scholar 

  10. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, pp. 3844–3852 (2016)

    Google Scholar 

  11. Di Folco, M., Moceri, P., Clarysse, P., Duchateau, N.: Characterizing interactions between cardiac shape and deformation by non-linear manifold learning. Med. Image Anal. 75, 102278 (2022)

    Article  Google Scholar 

  12. Eitel, I., et al.: Intracoronary compared with intravenous bolus abciximab application during primary percutaneous coronary intervention in ST-segment elevation myocardial infarction: cardiac magnetic resonance substudy of the AIDA STEMI trial. J. Am. Coll. Cardiol. 61(13), 1447–1454 (2013)

    Article  Google Scholar 

  13. Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Appl. Comput. Harm. Anal. 30(2), 129–150 (2011)

    Article  MATH  Google Scholar 

  14. Hong, B.D., Moulton, M.J., Secomb, T.W.: Modeling left ventricular dynamics with characteristic deformation modes. Biomech. Model. Mechanobiol. 18(6), 1683–1696 (2019). https://doi.org/10.1007/s10237-019-01168-8

    Article  Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  16. Krebs, J., Mansi, T., Ayache, N., Delingette, H.: Probabilistic motion modeling from medical image sequences: application to cardiac cine-MRI. In: Pop, M., et al. (eds.) STACOM 2019. LNCS, vol. 12009, pp. 176–185. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39074-7_19

    Chapter  Google Scholar 

  17. Krishnamurthy, A., et al.: Patient-specific models of cardiac biomechanics. J. Comput. Phys. 244, 4–21 (2013)

    Article  Google Scholar 

  18. Lamata, P., et al.: An automatic service for the personalization of ventricular cardiac meshes. J. Roy. Soc. Interface 11(91), 20131023 (2014)

    Article  Google Scholar 

  19. Lopez-Perez, A., Sebastian, R., Ferrero, J.M.: Three-dimensional cardiac computational modelling: methods, features and applications. Biomed. Eng. Online 14(1), 1–31 (2015)

    Article  Google Scholar 

  20. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput. Graph. 21(4), 163–169 (1987)

    Article  Google Scholar 

  21. Lu, P., Bai, W., Rueckert, D., Noble, J.A.: Modelling cardiac motion via spatio-temporal graph convolutional networks to boost the diagnosis of heart conditions. In: Puyol Anton, E., et al. (eds.) STACOM 2020. LNCS, vol. 12592, pp. 56–65. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68107-4_6

    Chapter  Google Scholar 

  22. Lu, P., Bai, W., Rueckert, D., Noble, J.A.: Multiscale graph convolutional networks for cardiac motion analysis. In: Ennis, D.B., Perotti, L.E., Wang, V.Y. (eds.) FIMH 2021. LNCS, vol. 12738, pp. 264–272. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78710-3_26

    Chapter  Google Scholar 

  23. Meister, F., et al.: Graph convolutional regression of cardiac depolarization from sparse endocardial maps. In: Puyol Anton, E., et al. (eds.) STACOM 2020. LNCS, vol. 12592, pp. 23–34. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68107-4_3

    Chapter  Google Scholar 

  24. Ossenberg-Engels, J., Grau, V.: Conditional generative adversarial networks for the prediction of cardiac contraction from individual frames. In: International Workshop on Statistical Atlases and Computational Models of the Heart, pp. 109–118 (2019)

    Google Scholar 

  25. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp. 8026–8037 (2019)

    Google Scholar 

  26. Qin, C., et al.: Joint learning of motion estimation and segmentation for cardiac MR image sequences. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 472–480. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_53

    Chapter  Google Scholar 

  27. Ranjan, A., Bolkart, T., Sanyal, S., Black, M.J.: Generating 3D faces using convolutional mesh autoencoders. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 704–720 (2018)

    Google Scholar 

  28. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  29. Thiele, H., et al.: Effect of aspiration thrombectomy on microvascular obstruction in NSTEMI patients: the TATORT-NSTEMI trial. J. Am. Coll. Cardiol. 64(11), 1117–1124 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors express no conflict of interest. The work of MB is supported by the Stiftung der Deutschen Wirtschaft (Foundation of German Business). AB is a Royal Society University Research Fellow and is supported by the Royal Society (Grant No. URF\(\backslash \)R1\(\backslash \)221314). The work of AB and VG is supported by the British Heart Foundation (BHF) Project under Grant PG/20/21/35082. The work of VG is supported by the CompBioMed 2 Centre of Excellence in Computational Biomedicine (European Commission Horizon 2020 research and innovation programme, grant agreement No. 823712). The work of JCA is supported by the EU’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie (g.a. 764738) and the EPSRC Impact Acceleration Account (D4D00010 DF48.01), funded by UK Research and Innovation. ABO holds a BHF Intermediate Basic Science Research Fellowship (FS/17/22/32644). The work is also supported by the German Center for Cardiovascular Research, the British Heart Foundation (PG/16/75/32383), and the Wellcome Trust (209450/Z/17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Beetz .

Editor information

Editors and Affiliations

Appendices

A 3D U-Net

In this section, we describe in greater detail the training and validation procedure of the 3D U-Net [6] used for both the end-diastolic and end-systolic prediction tasks. First, we convert the mesh representations of the cardiac anatomies of the whole dataset into voxelgrids to allow for the same dataset to be used for both the 3D U-Net and mesh U-Net evaluation. We achieve this by voxelizing the 3D meshes and placing them in the center of 128 \(\times \) 128 \(\times \) 128 voxelgrids where each voxel is encoded as either background (value: “0") or left ventricular myocardium (value: “1"). We then select a 3D U-Net architecture and train it using binary cross entropy as a loss function. Next, we pass the unseen test data through the trained 3D U-Net and convert the resulting predictions and corresponding gold standard anatomies from voxelgrid to 3D surface mesh representations with the marching cubes algorithm [20]. Finally, we use the obtained mesh representations to calculate both surface distances and Hausdorff distances between the meshes predicted by the 3D U-Net and the respective gold standard meshes.

B Subpopulation-Specific Deformations

We display the results of the subpopulation-specific training experiments using the Hausdorff distance as a quantitative metric in Fig. 4.

Fig. 4.
figure 4

Hausdorff distance distributions achieved by mesh U-Nets trained on one subpopulation and evaluated on unseen test dataset of the same subpopulation (blue color) and the complementary subpopulation (orange color). Plots are shown for both ED and ES prediction tasks (columns) and both STEMI and MACE population splits (rows). p-values for KS-test: <0.0001 (ED prediction for both STEMI and MACE); <0.001 (ES prediction for STEMI); <0.005 (ES prediction for MACE). (Color figure online)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beetz, M. et al. (2022). Mesh U-Nets for 3D Cardiac Deformation Modeling. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers. STACOM 2022. Lecture Notes in Computer Science, vol 13593. Springer, Cham. https://doi.org/10.1007/978-3-031-23443-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23443-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23442-2

  • Online ISBN: 978-3-031-23443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics