Specification and Validation of Autonomous Driving Systems: A Multilevel Semantic Framework | SpringerLink
Skip to main content

Specification and Validation of Autonomous Driving Systems: A Multilevel Semantic Framework

  • Chapter
  • First Online:
Principles of Systems Design

Abstract

Autonomous Driving Systems (ADS) are critical dynamic reconfigurable agent systems whose specification and validation raises extremely challenging problems. The paper presents a multilevel semantic framework for the specification of ADS and discusses associated validation problems. The framework relies on a formal definition of maps modeling the physical environment in which vehicles evolve. Maps are directed metric graphs whose nodes represent positions and edges represent segments of roads. We study basic properties of maps including their geometric consistency. Furthermore, we study position refinement and segment abstraction relations allowing multilevel representation from purely topological to detailed geometric. We progressively define first order logics for modeling families of maps and distributions of vehicles over maps. These are Configuration Logics, which in addition to the usual logical connectives are equipped with a coalescing operator to build configurations of models. We study their semantics and basic properties. We illustrate their use for the specification of traffic rules and scenarios characterizing sequences of scenes. We study various aspects of the validation problem including run-time verification and satisfiability of specifications. Finally, we show links of our framework with practical validation needs for ADS and advocate its adequacy for addressing the many facets of this challenge.

Institute of Engineering Univ. Grenoble Alpes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    the derivative \(\dot{c}\) exists and is continuous on [0, 1].

  2. 2.

    the instantaneous speed \({|\dot{c}|}\), that is, the Euclidean norm of the derivative is constant.

  3. 3.

    every edge occurs at most once in the path.

  4. 4.

    Except if needed for encoding the length of segment types.

References

  1. ASAM OpenDRIVE® - open dynamic road information for vehicle environment. Technical report, V 1.6.0, ASAM e.V., Mar 2020. https://www.asam.net/standards/detail/opendrive

  2. ASAM OpenScenario® - dynamic content in driving simulation, UML modeling rules. Technical report, V 1.0.0, ASAM e.V., Mar 2020. https://www.asam.net/standards/detail/openscenario

  3. Bagschik, G., Menzel, T., Maurer, M.: Ontology based scene creation for the development of automated vehicles. In: Intelligent Vehicles Symposium, pp. 1813–1820. IEEE (2018)

    Google Scholar 

  4. El Ballouli, R., Bensalem, S., Bozga, M., Sifakis, J.: Four exercises in programming dynamic reconfigurable systems: methodology and solution in DR-BIP. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11246, pp. 304–320. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03424-5_20

    Chapter  Google Scholar 

  5. Beetz, J., Borrmann, A.: Benefits and limitations of linked data approaches for road modeling and data exchange. In: Smith, I., Domer, B. (eds.) EG-ICE 2018. LNCS, vol. 10864, pp. 245–261. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91638-5_13

  6. Bozga, M., Sifakis, J.: Specification and validation of autonomous driving systems: a multilevel semantic framework. CoRR abs/2109.06478 (2021). https://arxiv.org/abs/2109.06478

  7. Chen, W., Kloul, L.: An ontology-based approach to generate the advanced driver assistance use cases of highway traffic. In: KEOD, pp. 73–81. SciTePress (2018)

    Google Scholar 

  8. Damm, W., Kemper, S., Möhlmann, E., Peikenkamp, T., Rakow, A.: Using traffic sequence charts for the development of HAVs. In: ERTS 2018, Proceedings (2018)

    Google Scholar 

  9. Dosovitskiy, A., Ros, G., Codevilla, F., López, A.M., Koltun, V.: CARLA: an open urban driving simulator. In: Proceedings of Machine Learning Research, vol. 78, pp. 1–16. PMLR (2017). CoRL

    Google Scholar 

  10. El-Hokayem, A., Bozga, M., Sifakis, J.: A temporal configuration logic for dynamic reconfigurable systems. In: SAC, pp. 1419–1428. ACM (2021)

    Google Scholar 

  11. Esterle, K., Aravantinos, V., Knoll, A.C.: From specifications to behavior: maneuver verification in a semantic state space. In: IV, pp. 2140–2147. IEEE (2019)

    Google Scholar 

  12. Esterle, K., Gressenbuch, L., Knoll, A.C.: Formalizing traffic rules for machine interpretability. In: CAVS, pp. 1–7. IEEE (2020)

    Google Scholar 

  13. Fremont, D.J., et al.: Scenic: a language for scenario specification and data generation. CoRR abs/2010.06580 (2020). https://arxiv.org/abs/2010.06580

  14. Fremont, D.J., et al.: Formal scenario-based testing of autonomous vehicles: from simulation to the real world. In: ITSC, pp. 1–8. IEEE (2020)

    Google Scholar 

  15. Harel, D., Marron, A., Sifakis, J.: Autonomics: in search of a foundation for next-generation autonomous systems. Proc. Natl. Acad. Sci. USA 117(30), 17491–17498 (2020)

    Article  Google Scholar 

  16. Hilscher, M., Linker, S., Olderog, E.-R., Ravn, A.P.: An abstract model for proving safety of multi-lane traffic manoeuvres. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 404–419. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24559-6_28

    Chapter  Google Scholar 

  17. Institute for Software Engineering and Programming Languages, University of Lübeck: LamaConv - Logics and Automata Converter Library (2020). https://www.isp.uni-luebeck.de/lamaconv

  18. Karimi, A., Duggirala, P.S.: Formalizing traffic rules for uncontrolled intersections. In: ICCPS, pp. 41–50. IEEE (2020)

    Google Scholar 

  19. Poggenhans, F., et al.: Lanelet2: a high-definition map framework for the future of automated driving. In: ITSC, pp. 1672–1679. IEEE (2018)

    Google Scholar 

  20. Rizaldi, A., Althoff, M.: Formalising traffic rules for accountability of autonomous vehicles. In: ITSC, pp. 1658–1665. IEEE (2015)

    Google Scholar 

  21. Rizaldi, A., Immler, F., Schürmann, B., Althoff, M.: A formally verified motion planner for autonomous vehicles. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 75–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_5

    Chapter  Google Scholar 

  22. Rizaldi, A., et al.: Formalising and monitoring traffic rules for autonomous vehicles in Isabelle/HOL. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 50–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66845-1_4

    Chapter  Google Scholar 

  23. Rong, G., et al.: LGSVL simulator: a high fidelity simulator for autonomous driving. CoRR abs/2005.03778 (2020). https://arxiv.org/abs/2005.03778

  24. Schönemann, V., et al.: Scenario-based functional safety for automated driving on the example of valet parking. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) FICC 2018. AISC, vol. 886, pp. 53–64. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03402-3_5

    Chapter  Google Scholar 

  25. Sifakis, J.: Autonomous systems – an architectural characterization. In: Boreale, M., Corradini, F., Loreti, M., Pugliese, R. (eds.) Models, Languages, and Tools for Concurrent and Distributed Programming. LNCS, vol. 11665, pp. 388–410. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21485-2_21

    Chapter  Google Scholar 

  26. Wikipedia. https://en.wikipedia.org/wiki/All-way_stop

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Bozga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bozga, M., Sifakis, J. (2022). Specification and Validation of Autonomous Driving Systems: A Multilevel Semantic Framework. In: Raskin, JF., Chatterjee, K., Doyen, L., Majumdar, R. (eds) Principles of Systems Design. Lecture Notes in Computer Science, vol 13660. Springer, Cham. https://doi.org/10.1007/978-3-031-22337-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22337-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22336-5

  • Online ISBN: 978-3-031-22337-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics