Multi-authority ABE from Lattices Without Random Oracles | SpringerLink
Skip to main content

Multi-authority ABE from Lattices Without Random Oracles

  • Conference paper
  • First Online:
Theory of Cryptography (TCC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13747))

Included in the following conference series:

  • 798 Accesses

Abstract

Attribute-based encryption (ABE) extends public-key encryption to enable fine-grained control to encrypted data. However, this comes at the cost of needing a central trusted authority to issue decryption keys. A multi-authority ABE (MA-ABE) scheme decentralizes ABE and allows anyone to serve as an authority. Existing constructions of MA-ABE only achieve security in the random oracle model.

In this work, we develop new techniques for constructing MA-ABE for the class of subset policies (which captures policies such as conjunctions and DNF formulas) whose security can be based in the plain model without random oracles. We achieve this by relying on the recently-proposed “evasive” learning with errors (LWE) assumption by Wee (EUROCRYPT 2022) and Tsabury (CRYPTO 2022).

Along the way, we also provide a modular view of the MA-ABE scheme for DNF formulas by Datta et al.  (EUROCRYPT 2021) in the random oracle model. We formalize this via a general version of a related-trapdoor LWE assumption by Brakerski and Vaikuntanathan (ITCS 2022), which can in turn be reduced to the plain LWE assumption. As a corollary, we also obtain an MA-ABE scheme for subset policies from plain LWE with a polynomial modulus-to-noise ratio in the random oracle model. This improves upon the Datta et al. construction which relied on LWE with a sub-exponential modulus-to-noise ratio. Moreover, we are optimistic that the generalized related-trapdoor LWE assumption will also be useful for analyzing the security of other lattice-based constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As noted in [DKW21a, Remark 6.1], the MA-ABE scheme therein requires a monotone secret-sharing scheme where reconstruction has small coefficients and the joint distribution of the unauthorized shares are uniformly random; such a scheme is only known for subset policies and DNFs.

  2. 2.

    See the descriptions of Hybrid 5 and the analysis of Lemmas 5.5 and 6.5 in [DKW21a], where noise smuging is used for simulating secret keys.

  3. 3.

    In the selective security game, the adversary starts by committing to the set X associated with the challenge ciphertext. The reduction algorithm is then allowed to program X into the public parameters of the scheme.

  4. 4.

    Some restriction on \(\textbf{M}\) is also necessary. For instance, it is easy to distinguish if \(\textbf{M}= \textbf{u}^{\scriptscriptstyle \textsf{T}}\), or more generally, if \(\textbf{u}_0^{\scriptscriptstyle \textsf{T}} \textbf{M}= \textbf{u}\) for some \(\textbf{u}_0 \in \{0,1\}^k\).

  5. 5.

    Concretely, \(\textbf{u}^{\scriptscriptstyle \textsf{T}} = [1 ~|~ \textbf{x}^{\scriptscriptstyle \textsf{T}}]\) and \(\textbf{M}= [1 ~|~ \textbf{y}^{\scriptscriptstyle \textsf{T}}]\) for some \(\textbf{x},\textbf{y}\in \{0,1\}^{L-1}\). The adversary is restricted to queries \(\textbf{y}\ne \textbf{x}\), which is implied by our requirement that \(\bar{\textbf{M}}\) has full rank.

  6. 6.

    In the static security model [RW15], we require the adversary to commit to the set of corrupted authorities, the secret-key queries, and the challenge ciphertext query at the beginning of the security game. Previous lattice-based MA-ABE constructions were also analyzed in the static security model [DKW21a].

References

  1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28

    Chapter  MATH  Google Scholar 

  2. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_6

    Chapter  MATH  Google Scholar 

  3. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: STOC, pp. 99–108 (1996)

    Google Scholar 

  4. Bos, J.W., et al.: Frodo: take off the ring! practical, quantum-secure key exchange from LWE. In: ACM CCS, pp. 1006–1018 (2016)

    Google Scholar 

  5. Brakerski, Z., Cash, D., Tsabary, R., Wee, H.: Targeted homomorphic attribute-based encryption. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 330–360. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_13

    Chapter  Google Scholar 

  6. Bootle, J., Delaplace, C., Espitau, T., Fouque, P.-A., Tibouchi, M.: LWE without modular reduction and improved side-channel attacks against BLISS. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 494–524. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_17

    Chapter  Google Scholar 

  7. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis, Technion (1996)

    Google Scholar 

  8. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_23

    Chapter  Google Scholar 

  9. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_42

    Chapter  Google Scholar 

  10. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: ACM CCS, pp. 62–73 (1993)

    Google Scholar 

  11. Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained PRFs (and more) from LWE. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 264–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_10

    Chapter  Google Scholar 

  12. Brakerski, Z., Vaikuntanathan, V.: Lattice-inspired broadcast encryption and succinct ciphertext-policy ABE. In: ITCS, pp. 28:1–28:20 (2022)

    Google Scholar 

  13. Chase, M., Chow, S.S.M.: Improving privacy and security in multi-authority attribute-based encryption. In: ACM CCS, pp. 121–130 (2009)

    Google Scholar 

  14. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_28

    Chapter  Google Scholar 

  15. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27

    Chapter  Google Scholar 

  16. Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation branching programs: proofs, attacks, and candidates. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 577–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_20

    Chapter  Google Scholar 

  17. Datta, P., Komargodski, I., Waters, B.: Decentralized multi-authority ABE for DNFs from LWE. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 177–209. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_7

    Chapter  Google Scholar 

  18. Datta, P., Komargodski, I., Waters, B.: Decentralized multi-authority ABE for nc\(\hat{~}\)1 from computational-bdh. IACR Cryptol. ePrint Arch. 1325 (2021)

    Google Scholar 

  19. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: STOC, pp. 467–476 (2013)

    Google Scholar 

  20. Goyal, R., Liu, J., Waters, B.: Adaptive security via deletion in attribute-based encryption: solutions from search assumptions in bilinear groups. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 311–341. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5_11

    Chapter  Google Scholar 

  21. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM CCS, pp. 89–98 (2006)

    Google Scholar 

  22. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC, pp. 197–206 (2008)

    Google Scholar 

  23. Kim, S.: Multi-authority attribute-based encryption from LWE in the OT model. IACR Cryptol. ePrint Arch. 280 (2019)

    Google Scholar 

  24. Lin, H., Cao, Z., Liang, X., Shao, J.: Secure threshold multi authority attribute based encryption without a central authority. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 426–436. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89754-5_33

    Chapter  Google Scholar 

  25. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_31

    Chapter  Google Scholar 

  26. Lyubashevsky, V., Wichs, D.: Simple lattice trapdoor sampling from a broad class of distributions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 716–730. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_32

    Chapter  Google Scholar 

  27. Müller, S., Katzenbeisser, S., Eckert, C.: Distributed attribute-based encryption. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 20–36. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00730-9_2

    Chapter  Google Scholar 

  28. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  29. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93 (2005)

    Google Scholar 

  30. Rouselakis, Y., Waters, B.: Efficient statically-secure large-universe multi-authority attribute-based encryption. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 315–332. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7_19

    Chapter  Google Scholar 

  31. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27

    Chapter  Google Scholar 

  32. Tsabary, R.: Fully secure attribute-based encryption for t-CNF from LWE. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 62–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_3

    Chapter  Google Scholar 

  33. Tsabary, R.: Candidate witness encryption from lattice techniques. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13507, pp. 535–559. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15802-5_19

    Chapter  Google Scholar 

  34. Vaikuntanathan, V., Wee, H., Wichs, D.: Witness encryption and null-IO from evasive LWE. In: ASIACRYPT (2022)

    Google Scholar 

  35. Wee, H.: Optimal broadcast encryption and CP-ABE from evasive lattice assumptions. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13276, pp. 217–241. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07085-3_8

    Chapter  Google Scholar 

  36. Wang, Z., Fan, X., Liu, F.-H.: FE for inner products and its application to decentralized ABE. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 97–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_4

    Chapter  Google Scholar 

  37. Waters, B., Wee, H., Wu, D.J.: Multi-authority ABE from lattices without random oracles. IACR Cryptol. ePrint Arch. (2022)

    Google Scholar 

Download references

Acknowledgments

We thanks the TCC reviewers for helpful suggestions. B. Waters is supported by NSF CNS-1908611, a Simons Investigator award, and the Packard Foundation Fellowship. D. J. Wu is supported by NSF CNS-2151131, CNS-2140975, a Microsoft Research Faculty Fellowship, and a Google Research Scholar award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Waters, B., Wee, H., Wu, D.J. (2022). Multi-authority ABE from Lattices Without Random Oracles. In: Kiltz, E., Vaikuntanathan, V. (eds) Theory of Cryptography. TCC 2022. Lecture Notes in Computer Science, vol 13747. Springer, Cham. https://doi.org/10.1007/978-3-031-22318-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22318-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22317-4

  • Online ISBN: 978-3-031-22318-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics