Machine Learning Approach to Predict Metastasis in Lung Cancer Based on Radiomic Features | SpringerLink
Skip to main content

Machine Learning Approach to Predict Metastasis in Lung Cancer Based on Radiomic Features

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2022)

Abstract

Lung cancer is the most common cause of cancer-related death worldwide. One of the most significant negative prognostic factors is the occurrence of metastasis. Recently, one of the promising way to diagnose cancer samples is to use the image data (PET, CT etc.) and calculated on the basis of these images so called radiomic features. In this paper we present the attempt to use the radiomic features to predict the metastasis for lung cancer patients. We applied and compared three feature selection methods and two classification methods: logistic regression and support vector machines. The obtained accuracy of the best classifier confirms the potential of the radiomic data in prediction of metastasis in lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aerts, H.J.W.L., et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature communications 5, 4006 (2014). https://doi.org/10.1038/ncomms5006

  2. Brierley, J.D., Gospodarowicz, M.K., Wittekind, C.: TNM classification of malignant tumours. John Wiley & Sons (2017)

    Google Scholar 

  3. Cruz, C.S.D., Tanoue, L.T., Matthay, R.A.: Lung cancer: Epidemiology, etiology, and prevention. Clin. Chest Med. 32(4), 605–644 (2011). https://doi.org/10.1016/j.ccm.2011.09.001

    Article  Google Scholar 

  4. d’Amico, A., Borys, D., Gorczewska, I.: Radiomics and artificial intelligence for PET imaging analysis. Nuclear medicine review. Central Eastern Europe 23(1), 36–39 2020). https://doi.org/10.5603/NMR.2020.0005

  5. Fujarewicz, K., et al.: Large-scale data classification system based on galaxy server and protected from information leak. In: Nguyen, N.T., Tojo, S., Nguyen, L.M., Trawiński, B. (eds.) ACIIDS 2017. LNCS (LNAI), vol. 10192, pp. 765–773. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54430-4_73

    Chapter  Google Scholar 

  6. Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: Images are more than pictures, they are data. Radiology 278(2), 563–77 (2016). https://doi.org/10.1148/radiol.2015151169

    Article  Google Scholar 

  7. van Griethuysen, J.J.M., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104–e107 (2017). https://doi.org/10.1158/0008-5472.CAN-17-0339

  8. Inamura, K.: Lung cancer: Understanding its molecular pathology and the 2015 WHO classification. Front. Oncol. 7, 193 (2017). https://doi.org/10.3389/fonc.2017.00193

    Article  Google Scholar 

  9. Kumar, V., et al.: Radiomics: the process and the challenges. Magn. Reson. Imaging 30(9), 1234–1248 (2012). https://doi.org/10.1016/j.mri.2012.06.010

    Article  Google Scholar 

  10. Lambin, P., et al.: Radiomics: extracting more information from medical images using advanced feature analysis. Euro. J. Cancer (Oxford, England : 1990) 48(4), 441–446 (2012). https://doi.org/10.1016/j.ejca.2011.11.036

  11. Oken, M.M., et al.: Toxicity and response criteria of the eastern cooperative oncology group. Am. J. Clinical Oncol. 5(6), 649–656 (1982). https://doi.org/10.1097/00000421-198212000-00014

    Article  Google Scholar 

  12. Popper, H.H.: Progression and metastasis of lung cancer. Cancer Metastasis Rev. 35(1), 75–91 (2016). https://doi.org/10.1007/s10555-016-9618-0

    Article  Google Scholar 

  13. Simon, R., Radmacher, M.D., Dobbin, K., McShane, L.M.: Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. JNCI J. National Cancer Inst. 95(1), 14–18 (2003). https://doi.org/10.1093/jnci/95.1.14

  14. Student, S., Fujarewicz, K.: Stable feature selection and classification algorithms for multiclass microarray data. Biol. Direct 7(1), 33 (2012). https://doi.org/10.1186/1745-6150-7-33

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by Polish National Science Centre, grant number: UMO-2020/37/B/ST6/01959 and Silesian University of Technology statutory research funds. Calculations were performed on the Ziemowit computer cluster in the Laboratory of Bioinformatics and Computational Biology created in the EU Innovative Economy Programme POIG.02.01.00-00-166/08 and expanded in the POIG.02.03.01-00-040/13 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Fujarewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fujarewicz, K., Wilk, A., Borys, D., d’Amico, A., Suwiński, R., Świerniak, A. (2022). Machine Learning Approach to Predict Metastasis in Lung Cancer Based on Radiomic Features. In: Nguyen, N.T., Tran, T.K., Tukayev, U., Hong, TP., Trawiński, B., Szczerbicki, E. (eds) Intelligent Information and Database Systems. ACIIDS 2022. Lecture Notes in Computer Science(), vol 13758. Springer, Cham. https://doi.org/10.1007/978-3-031-21967-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21967-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21966-5

  • Online ISBN: 978-3-031-21967-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics