Abstract
Web servers provide most internet services, such as information sharing, financial, health, entertainment, and education. In this context, the web has become the principal place for attackers. Unfortunately, most defensive techniques for web servers cannot deal with the complexity and evolution of cyber attacks on HTTP requests. However, machine learning approaches can help detect some attacks. This work presents the RequestBERT-BiLSTM, a new model to detect possible HTTP request attacks without using Log Parser. We evaluated the model on public datasets such as CSIC 2010, ECML/PKDD 2007, and BGL. We also developed a new dataset from a real environment to evaluate the method. In addition, we illustrate that the traditional log analysis step can degrade the model’s performance due to parser errors. Furthermore, we compared the performance of the proposed approach with literature models, and we obtained a detection rate above 95%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Regex is the abbreviation of the English Regular Expressions, for regular expressions.
References
Assigning attack signatures to security policies (2022). https://techdocs.f5.com/kb/en-us/products/big-ip_asm/manuals/product/asm-bot-and-attack-signatures-13-0-0/1.html
Althubiti, S., Yuan, X., Esterline, A.: Analyzing http requests for web intrusion detection (2017)
Chen, Z., Liu, J., Gu, W., Su, Y., Lyu, M.R.: Experience report: deep learning-based system log analysis for anomaly detection. CoRR abs/2107.05908 (2021). https://arxiv.org/abs/2107.05908
Du, M., Li, F., Zheng, G., Srikumar, V.: DeepLog: anomaly detection and diagnosis from system logs through deep learning, pp. 1285–1298 (2017). https://doi.org/10.1145/3133956.3134015
Guo, H., Yuan, S., Wu, X.: LogBERT: log anomaly detection via BERT, pp. 1–8 (2021). https://doi.org/10.1109/IJCNN52387.2021.9534113
He, P., Zhu, J., He, S., Li, J., Lyu, M.R.: An evaluation study on log parsing and its use in log mining, pp. 654–661 (2016). https://doi.org/10.1109/DSN.2016.66
He, P., Zhu, J., Zheng, Z., Lyu, M.R.: Drain: an online log parsing approach with fixed depth tree, pp. 33–40 (2017). https://doi.org/10.1109/ICWS.2017.13
He, S., Zhu, J., He, P., Lyu, M.R.: Experience report: system log analysis for anomaly detection, pp. 207–218 (2016). https://doi.org/10.1109/ISSRE.2016.21
Ito, M., Iyatomi, H.: Web application firewall using character-level convolutional neural network, pp. 103–106 (2018). https://doi.org/10.1109/CSPA.2018.8368694
Jiang, Z., Hassan, A.E., Hamann, G., Flora, P.: An automated approach for abstracting execution logs to execution events, pp. 249–267 (2008). https://doi.org/10.1002/smr.374
Kim, Y.: Convolutional neural networks for sentence classification. CoRR abs/1408.5882 (2014). http://arxiv.org/abs/1408.5882
Kuang, X., et al.: DeepWAF: detecting web attacks based on CNN and LSTM models. In: Vaidya, J., Zhang, X., Li, J. (eds.) CSS 2019. LNCS, vol. 11983, pp. 121–136. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37352-8_11
Le, V., Zhang, H.: Log-based anomaly detection without log parsing. CoRR abs/2108.01955 (2021). https://arxiv.org/abs/2108.01955
Lu, S., Wei, X., Li, Y., Wang, L.: Detecting anomaly in big data system logs using convolutional neural network, pp. 151–158 (2018). https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00037
Meng, W., et al.: LogAnomaly: unsupervised detection of sequential and quantitative anomalies in unstructured logs. In: IJCAI (2019)
Nagappan, M., Vouk, M.A.: Abstracting log lines to log event types for mining software system logs, pp. 114–117 (2010). https://doi.org/10.1109/MSR.2010.5463281
Nedelkoski, S., Bogatinovski, J., Acker, A., Cardoso, J., Kao, O.: Self-supervised log parsing. In: Dong, Y., Mladenić, D., Saunders, C. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12460, pp. 122–138. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67667-4_8
Odumuyiwa, V., Chibueze, A.: Automatic detection of http injection attacks using convolutional neural network and deep neural network (2020)
Oliner, A., Stearley, J.: What supercomputers say: a study of five system logs, pp. 575–584 (2007). https://doi.org/10.1109/DSN.2007.103
Raïssi, C., Brissaud, J., Dray, G., Poncelet, P., Roche, M., Teisseire, M.: Web analyzing traffic challenge: description and results (2007)
Tang, L., Li, T., Perng, C.S.: LogSig: Generating System Events from Raw Textual Logs. Association for Computing Machinery, New York (2011). https://doi.org/10.1145/2063576.2063690
Torrano-Gimenez, C., Perez-Villegas, A., Alvarez, G.: A self-learning anomaly-based web application firewall. In: Herrero, Á., Gastaldo, P., Zunino, R., Corchado, E. (eds.) Computational Intelligence in Security for Information Systems. AISC, pp. 85–92. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04091-7_11
Vaswani, A., et al.: Attention is all you need. CoRR abs/1706.03762 (2017). http://arxiv.org/abs/1706.03762
Xuan, C., Dinh, H., Victor, T.: Malicious URL detection based on machine learning. 11 (2020). https://doi.org/10.14569/IJACSA.2020.0110119
Yu, L., et al.: Detecting malicious web requests using an enhanced TextCNN, pp. 768–777 (2020). https://doi.org/10.1109/COMPSAC48688.2020.0-167
Zhu, J., et al.: Tools and benchmarks for automated log parsing. CoRR abs/1811.03509 (2018). http://arxiv.org/abs/1811.03509
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ramos Júnior, L.S., Macêdo, D., Oliveira, A.L.I., Zanchettin, C. (2022). Detecting Malicious HTTP Requests Without Log Parser Using RequestBERT-BiLSTM. In: Xavier-Junior, J.C., Rios, R.A. (eds) Intelligent Systems. BRACIS 2022. Lecture Notes in Computer Science(), vol 13654 . Springer, Cham. https://doi.org/10.1007/978-3-031-21689-3_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-21689-3_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21688-6
Online ISBN: 978-3-031-21689-3
eBook Packages: Computer ScienceComputer Science (R0)