Abstract
Medical image assessment plays a vital role in hospitals during the disease assessment and decision making. Proposed work aims to develop an image processing procedure to appraise the brain tumor fragment from Flair modality recorded MRI slice. The proposed technique employs joint thresholding and segmentation practice to extract the infected part from the chosen image. Initially, a tri-level thresholding based on Mayfly Algorithm and Kapur’s Entropy (MA + KE) is implemented to improve the tumor and then the tumor area is mined using the automated Watershed Segmentation Scheme (WSS). The merit of the employed procedure is verified on various 2D MRI planes, such as axial, coronal and sagittal and the experimental outcome confirmed that this technique helps to mine the tumor area with better accuracy. In this work, the necessary images are collected from BRATS2015 dataset and 30 patient’s information (10 slices per patient) is considered for the examination. The experimental investigation is implemented using MATLAB® and 300 images from every 2D plane are examined. The proposed technique helps to get better values of Jaccard-Index (>85%), Dice-coefficient (>91%) and Accuracy (98%) on the considered MRI slices.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Fernandes, S.L., Tanik, U.J., Rajinikanth, V., Karthik, K.A.: A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians. Neural Comput. Appl. 32(20), 15897–15908 (2019). https://doi.org/10.1007/s00521-019-04369-5
Thivya Roopini, I., Vasanthi, M., Rajinikanth, V., Rekha, M., Sangeetha, M.: Segmentation of tumor from brain MRI using fuzzy entropy and distance regularised level set. In: Nandi, A.K., Sujatha, N., Menaka, R., Alex, J.S.R. (eds.) Computational Signal Processing and Analysis. LNEE, vol. 490, pp. 297–304. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-8354-9_27
Rajinikanth, V., Joseph Raj, A.N., Thanaraj, K.P., Naik, G.R.: A customized VGG19 network with concatenation of deep and handcrafted features for brain tumor detection. Appl. Sci. 10(10), 3429 (2020)
Rajinikanth, V., Kadry, S., Nam, Y.: Convolutional-neural-network assisted segmentation and SVM classification of brain tumor in clinical MRI slices. Information Technology and Control 50(2), 342–356 (2021)
Kadry, S., Rajinikanth, V., Raja, N.S.M., Jude Hemanth, D., Hannon, N.M.S., Raj, A.N.J.: Evaluation of brain tumor using brain MRI with modified-moth-flame algorithm and Kapur’s thresholding: a study. Evol. Intel. 14(2), 1053–1063 (2021). https://doi.org/10.1007/s12065-020-00539-w
Lin, D., Rajinikanth, V., Lin, H.: Hybrid image processing-based examination of 2D brain MRI slices to detect brain tumor/stroke section: a study. In: Priya, E., Rajinikanth, V. (eds.) Signal and Image Processing Techniques for the Development of Intelligent Healthcare Systems, pp. 29–49. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-6141-2_2
Satapathy, S.C., Rajinikanth, V.: Jaya algorithm guided procedure to segment tumor from brain MRI. J. Optim. 2018, 1–12 (2018). https://doi.org/10.1155/2018/3738049
Suresh Manic, K., Hasoon, F.N., Shibli, N.A., Satapathy, S.C., Rajinikanth, V.: An approach to examine brain tumor based on Kapur’s entropy and Chan–Vese algorithm. In: Yang, X.-S., Sherratt, S., Dey, N., Joshi, A. (eds.) Third International Congress on Information and Communication Technology. AISC, vol. 797, pp. 901–909. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1165-9_81
Kadry, S., Nam, Y., Rauf, H.T., Rajinikanth, V., Lawal, I.A.: Automated detection of brain abnormality using deep-learning-scheme: a study. In: 2021 Seventh International Conference on Bio Signals, Images, and Instrumentation (ICBSII), pp. 1–5. IEEE (Mar 2021)
Yushkevich, P.A., Gao, Y., Gerig, G.: ITK-SNAP: an interactive tool for semi-automatic segmentation of multi-modality biomedical images. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3342–3345. IEEE (Aug 2016)
ITK-Snap. http://www.itksnap.org/pmwiki/pmwiki.php
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)
Menze, B.H., Van Leemput, K., Lashkari, D., Weber, M.A., Ayache, N., Golland, P.: A generative model for brain tumor segmentation in multi-modal images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 151–159. Springer, Berlin, Heidelberg (Sep 2010)
Kadry, S., Rajinikanth, V., Koo, J., Kang, B.-G.: Image multi-level-thresholding with Mayfly optimization. Int. J. Electr. Comput. Eng. (IJECE) 11(6), 5420 (2021). https://doi.org/10.11591/ijece.v11i6.pp5420-5429
Levner, I., Zhang, H.: Classification-driven watershed segmentation. IEEE Trans. Image Process. 16(5), 1437–1445 (2007)
Nguyen, H.T., Worring, M., Van Den Boomgaard, R.: Watersnakes: energy-driven watershed segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 25(3), 330–342 (2003)
Shafarenko, L., Petrou, M., Kittler, J.: Automatic watershed segmentation of randomly textured color images. IEEE Trans. Image Process. 6(11), 1530–1544 (1997)
Khan, M.A., et al.: Computer-aided gastrointestinal diseases analysis from wireless capsule endoscopy: a framework of best features selection. IEEE Access 8, 132850–132859 (2020)
Shree, et al.: A hybrid image processing approach to examine abnormality in retinal optic disc. Procedia Comput. Sci. 125, 157–164 (2018). https://doi.org/10.1016/j.procs.2017.12.022
Dey, N., Rajinikanth, V., Fong, S.J., Kaiser, M.S., Mahmud, M.: Social group optimization–assisted Kapur’s entropy and morphological segmentation for automated detection of COVID-19 infection from computed tomography images. Cogn. Comput. 12(5), 1011–1023 (2020)
Rajinikanth, V., Thanaraj, K.P., Satapathy, S.C., Fernandes, S.L., Dey, N.: Shannon’s entropy and watershed algorithm based technique to inspect ischemic stroke wound. In: Smart Intelligent Computing and Applications, pp. 23–31. Springer, Singapore (2019)
Fernandes, S.L., Rajinikanth, V., Kadry, S.: A hybrid framework to evaluate breast abnormality using infrared thermal images. IEEE Consum. Electron. Mag. 8(5), 31–36 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Kadry, S., Taniar, D., Meqdad, M.N., Srivastava, G., Rajinikanth, V. (2022). Assessment of Brain Tumor in Flair MRI Slice with Joint Thresholding and Segmentation. In: Chbeir, R., Manolopoulos, Y., Prasath, R. (eds) Mining Intelligence and Knowledge Exploration. MIKE 2021. Lecture Notes in Computer Science(), vol 13119. Springer, Cham. https://doi.org/10.1007/978-3-031-21517-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-21517-9_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21516-2
Online ISBN: 978-3-031-21517-9
eBook Packages: Computer ScienceComputer Science (R0)