Assessment of Brain Tumor in Flair MRI Slice with Joint Thresholding and Segmentation | SpringerLink
Skip to main content

Assessment of Brain Tumor in Flair MRI Slice with Joint Thresholding and Segmentation

  • Conference paper
  • First Online:
Mining Intelligence and Knowledge Exploration (MIKE 2021)

Abstract

Medical image assessment plays a vital role in hospitals during the disease assessment and decision making. Proposed work aims to develop an image processing procedure to appraise the brain tumor fragment from Flair modality recorded MRI slice. The proposed technique employs joint thresholding and segmentation practice to extract the infected part from the chosen image. Initially, a tri-level thresholding based on Mayfly Algorithm and Kapur’s Entropy (MA + KE) is implemented to improve the tumor and then the tumor area is mined using the automated Watershed Segmentation Scheme (WSS). The merit of the employed procedure is verified on various 2D MRI planes, such as axial, coronal and sagittal and the experimental outcome confirmed that this technique helps to mine the tumor area with better accuracy. In this work, the necessary images are collected from BRATS2015 dataset and 30 patient’s information (10 slices per patient) is considered for the examination. The experimental investigation is implemented using MATLAB® and 300 images from every 2D plane are examined. The proposed technique helps to get better values of Jaccard-Index (>85%), Dice-coefficient (>91%) and Accuracy (98%) on the considered MRI slices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7435
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9294
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fernandes, S.L., Tanik, U.J., Rajinikanth, V., Karthik, K.A.: A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians. Neural Comput. Appl. 32(20), 15897–15908 (2019). https://doi.org/10.1007/s00521-019-04369-5

    Article  Google Scholar 

  2. Thivya Roopini, I., Vasanthi, M., Rajinikanth, V., Rekha, M., Sangeetha, M.: Segmentation of tumor from brain MRI using fuzzy entropy and distance regularised level set. In: Nandi, A.K., Sujatha, N., Menaka, R., Alex, J.S.R. (eds.) Computational Signal Processing and Analysis. LNEE, vol. 490, pp. 297–304. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-8354-9_27

    Chapter  Google Scholar 

  3. Rajinikanth, V., Joseph Raj, A.N., Thanaraj, K.P., Naik, G.R.: A customized VGG19 network with concatenation of deep and handcrafted features for brain tumor detection. Appl. Sci. 10(10), 3429 (2020)

    Article  Google Scholar 

  4. Rajinikanth, V., Kadry, S., Nam, Y.: Convolutional-neural-network assisted segmentation and SVM classification of brain tumor in clinical MRI slices. Information Technology and Control 50(2), 342–356 (2021)

    Article  Google Scholar 

  5. Kadry, S., Rajinikanth, V., Raja, N.S.M., Jude Hemanth, D., Hannon, N.M.S., Raj, A.N.J.: Evaluation of brain tumor using brain MRI with modified-moth-flame algorithm and Kapur’s thresholding: a study. Evol. Intel. 14(2), 1053–1063 (2021). https://doi.org/10.1007/s12065-020-00539-w

    Article  Google Scholar 

  6. Lin, D., Rajinikanth, V., Lin, H.: Hybrid image processing-based examination of 2D brain MRI slices to detect brain tumor/stroke section: a study. In: Priya, E., Rajinikanth, V. (eds.) Signal and Image Processing Techniques for the Development of Intelligent Healthcare Systems, pp. 29–49. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-6141-2_2

    Chapter  Google Scholar 

  7. Satapathy, S.C., Rajinikanth, V.: Jaya algorithm guided procedure to segment tumor from brain MRI. J. Optim. 2018, 1–12 (2018). https://doi.org/10.1155/2018/3738049

    Article  Google Scholar 

  8. Suresh Manic, K., Hasoon, F.N., Shibli, N.A., Satapathy, S.C., Rajinikanth, V.: An approach to examine brain tumor based on Kapur’s entropy and Chan–Vese algorithm. In: Yang, X.-S., Sherratt, S., Dey, N., Joshi, A. (eds.) Third International Congress on Information and Communication Technology. AISC, vol. 797, pp. 901–909. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1165-9_81

    Chapter  Google Scholar 

  9. Kadry, S., Nam, Y., Rauf, H.T., Rajinikanth, V., Lawal, I.A.: Automated detection of brain abnormality using deep-learning-scheme: a study. In: 2021 Seventh International Conference on Bio Signals, Images, and Instrumentation (ICBSII), pp. 1–5. IEEE (Mar 2021)

    Google Scholar 

  10. Yushkevich, P.A., Gao, Y., Gerig, G.: ITK-SNAP: an interactive tool for semi-automatic segmentation of multi-modality biomedical images. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3342–3345. IEEE (Aug 2016)

    Google Scholar 

  11. ITK-Snap. http://www.itksnap.org/pmwiki/pmwiki.php

  12. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  13. Menze, B.H., Van Leemput, K., Lashkari, D., Weber, M.A., Ayache, N., Golland, P.: A generative model for brain tumor segmentation in multi-modal images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 151–159. Springer, Berlin, Heidelberg (Sep 2010)

    Google Scholar 

  14. Kadry, S., Rajinikanth, V., Koo, J., Kang, B.-G.: Image multi-level-thresholding with Mayfly optimization. Int. J. Electr. Comput. Eng. (IJECE) 11(6), 5420 (2021). https://doi.org/10.11591/ijece.v11i6.pp5420-5429

    Article  Google Scholar 

  15. Levner, I., Zhang, H.: Classification-driven watershed segmentation. IEEE Trans. Image Process. 16(5), 1437–1445 (2007)

    Article  MathSciNet  Google Scholar 

  16. Nguyen, H.T., Worring, M., Van Den Boomgaard, R.: Watersnakes: energy-driven watershed segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 25(3), 330–342 (2003)

    Article  Google Scholar 

  17. Shafarenko, L., Petrou, M., Kittler, J.: Automatic watershed segmentation of randomly textured color images. IEEE Trans. Image Process. 6(11), 1530–1544 (1997)

    Article  Google Scholar 

  18. Khan, M.A., et al.: Computer-aided gastrointestinal diseases analysis from wireless capsule endoscopy: a framework of best features selection. IEEE Access 8, 132850–132859 (2020)

    Article  Google Scholar 

  19. Shree, et al.: A hybrid image processing approach to examine abnormality in retinal optic disc. Procedia Comput. Sci. 125, 157–164 (2018). https://doi.org/10.1016/j.procs.2017.12.022

    Article  Google Scholar 

  20. Dey, N., Rajinikanth, V., Fong, S.J., Kaiser, M.S., Mahmud, M.: Social group optimization–assisted Kapur’s entropy and morphological segmentation for automated detection of COVID-19 infection from computed tomography images. Cogn. Comput. 12(5), 1011–1023 (2020)

    Article  Google Scholar 

  21. Rajinikanth, V., Thanaraj, K.P., Satapathy, S.C., Fernandes, S.L., Dey, N.: Shannon’s entropy and watershed algorithm based technique to inspect ischemic stroke wound. In: Smart Intelligent Computing and Applications, pp. 23–31. Springer, Singapore (2019)

    Google Scholar 

  22. Fernandes, S.L., Rajinikanth, V., Kadry, S.: A hybrid framework to evaluate breast abnormality using infrared thermal images. IEEE Consum. Electron. Mag. 8(5), 31–36 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seifedine Kadry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kadry, S., Taniar, D., Meqdad, M.N., Srivastava, G., Rajinikanth, V. (2022). Assessment of Brain Tumor in Flair MRI Slice with Joint Thresholding and Segmentation. In: Chbeir, R., Manolopoulos, Y., Prasath, R. (eds) Mining Intelligence and Knowledge Exploration. MIKE 2021. Lecture Notes in Computer Science(), vol 13119. Springer, Cham. https://doi.org/10.1007/978-3-031-21517-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21517-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21516-2

  • Online ISBN: 978-3-031-21517-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics