Marine Data Sharing: Challenges, Technology Drivers and Quality Attributes | SpringerLink
Skip to main content

Marine Data Sharing: Challenges, Technology Drivers and Quality Attributes

  • Conference paper
  • First Online:
Product-Focused Software Process Improvement (PROFES 2022)

Abstract

Context: Many companies have been adopting data-driven applications in which products and services are centered around data analysis to approach new segments of the marketplace. Data ecosystems rise from data sharing among organizations premeditatedly. However, this migration to this new data sharing paradigm has not come that far in the marine domain. Nevertheless, better utilizing the ocean data might be crucial for humankind in the future, for food production, and minerals, to ensure the ocean’s health. Research goal: We investigate the state-of-the-art regarding data sharing in the marine domain with a focus on aspects that impact the speed of establishing a data ecosystem for the ocean. Methodology: We conducted an exploratory case study based on focus groups and workshops to understand the sharing of data in this context. Results: We identified main challenges of current systems that need to be addressed with respect to data sharing. Additionally, aspects related to the establishment of a data ecosystem were elicited and analyzed in terms of benefits, conflicts, and solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://cordis.europa.eu/project/id/619551.

  2. 2.

    https://miro.com/.

References

  1. Ansari, S., et al.: Unlocking the potential of NEXRAD data through NOAA’s big data partnership. Bull. Am. Meteor. Soc. 99(1), 189–204 (2018)

    Article  MathSciNet  Google Scholar 

  2. Anwar, M.J., Gill, A.Q., Hussain, F.K., Imran, M.: Secure big data ecosystem architecture: challenges and solutions. EURASIP J. Wirel. Commun. Netw. 2021(1), 1–30 (2021). https://doi.org/10.1186/s13638-021-01996-2

    Article  Google Scholar 

  3. Asche, F., Hansen, H., Tveteras, R., Tveterås, S.: The salmon disease crisis in Chile. Mar. Resour. Econ. 24(4), 405–411 (2009)

    Article  Google Scholar 

  4. Buck, J.J., et al.: Ocean data product integration through innovation-the next level of data interoperability. Front. Mar. Sci. 6, 32 (2019)

    Article  Google Scholar 

  5. Byabazaire, J., O’Hare, G., Delaney, D.: Using trust as a measure to derive data quality in data shared IoT deployments. In: ICCCN, pp. 1–9 (2020)

    Google Scholar 

  6. Cui, Y., Kara, S., Chan, K.C.: Manufacturing big data ecosystem: a systematic literature review. Rob. Comput. Integr. Manuf. 62, 101861 (2020)

    Google Scholar 

  7. Domingo, M.C.: An overview of the internet of underwater things. J. Netw. Comput. Appl. 35(6), 1879–1890 (2012)

    Article  Google Scholar 

  8. Fattah, S., Gani, A., Ahmedy, I., Idris, M.Y.I., Targio Hashem, I.A.: A survey on underwater wireless sensor networks: requirements, taxonomy, recent advances, and open research challenges. Sensors 20(18), 5393 (2020)

    Google Scholar 

  9. Hankin, S., et al.: NetCDF-CF-OPeNDAP: standards for ocean data interoperability and object lessons for community data standards processes. In: Oceanobs 2009, Venice Convention Centre, 21–25 September 2009, Venise (2010)

    Google Scholar 

  10. Hansen, H.S., Reiter, I.M., Schrøder, L.: A system architecture for a transnational data infrastructure supporting maritime spatial planning. In: Kő, A., Francesconi, E. (eds.) EGOVIS 2017. LNCS, vol. 10441, pp. 158–172. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64248-2_12

    Chapter  Google Scholar 

  11. ul Hassan, U., Curry, E.: Stakeholder analysis of data ecosystems. In: Curry, E., Metzger, A., Zillner, S., Pazzaglia, J.-C., García Robles, A. (eds.) The Elements of Big Data Value, pp. 21–39. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68176-0_2

    Chapter  Google Scholar 

  12. Lima, K., et al.: Marine data sharing companion package (2022). https://doi.org/10.5281/zenodo.6901964

  13. Louw-Reimer, J., Nielsen, J.L.M., Bjørn-Andersen, N., Kouwenhoven, N.: Boosting the effectiveness of Containerised supply chains: a case study of TradeLens. In: Lind, M., Michaelides, M., Ward, R., Watson, R.T. (eds.) Maritime Informatics. PI, pp. 95–115. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72785-7_6

    Chapter  Google Scholar 

  14. Míguez, B.M., et al.: The European marine observation and data network (EMODnet): visions and roles of the gateway to marine data in Europe. Frontiers Mar. Sci. 6, 1–24 (2019)

    Google Scholar 

  15. Munappy, A.R., Mattos, D.I., Bosch, J., Olsson, H.H., Dakkak, A.: From ad-hoc data analytics to dataOps. In: ICSSP 2020, pp. 165–174. ACM (2020)

    Google Scholar 

  16. Nakhkash, M.R., Gia, T.N., Azimi, I., Anzanpour, A., Rahmani, A.M., Liljeberg, P.: Analysis of performance and energy consumption of wearable devices and mobile gateways in IoT applications. In: Proceedings of the International Conference on Omni-Layer Intelligent Systems, pp. 68–73 (2019)

    Google Scholar 

  17. Oliveira, M.I.S., Lóscio, B.F.: What is a data ecosystem? In: Proceedings of the 19th Annual International Conference on Digital Government Research: Governance in the Data Age, pp. 1–9 (2018)

    Google Scholar 

  18. Pearlman, J., Schaap, D., Glaves, H.: Ocean data interoperability platform (ODIP): addressing key challenges for marine data management on a global scale. In: Oceans 2016 MTS/IEEE Monterey, pp. 1–7. IEEE (2016)

    Google Scholar 

  19. Peña-López, I., et al.: ITU Internet report 2005: the internet of things. Technical report, International Telecommunication Union (2005)

    Google Scholar 

  20. Qiu, T., Zhao, Z., Zhang, T., Chen, C., Chen, C.P.: Underwater internet of things in smart ocean: system architecture and open issues. IEEE Trans. Industr. Inf. 16(7), 4297–4307 (2019)

    Article  Google Scholar 

  21. Rukanova, B., et al.: Realizing value from voluntary business-government information sharing through blockchain-enabled infrastructures: The case of importing tires to The Netherlands using TradeLens. In: DG.O2021, pp. 505–514 (2021)

    Google Scholar 

  22. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in software engineering. Empir. Softw. Eng. 14(2), 131–164 (2009)

    Article  Google Scholar 

  23. Runeson, P., Olsson, T., Linåker, J.: Open data ecosystems-an empirical investigation into an emerging industry collaboration concept. J. Syst. Softw. 182, 111088 (2021)

    Article  Google Scholar 

  24. Schubert, R., Marinica, I.: Facebook data: sharing, caring, and selling. In: 2019 International Conference on Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA), pp. 1–3 (2019)

    Google Scholar 

  25. Systems and Software Engineering: ISO/IEC 25010: Systems and software quality requirements and evaluation (SQuaRE) (2011)

    Google Scholar 

  26. Tanhua, T., et al.: What we have learned from the framework for ocean observing: evolution of the global ocean observing system. Front. Mar. Sci. 6, 471 (2019)

    Article  Google Scholar 

  27. Tanhua, T., et al.: Ocean FAIR data services. Frontiers Mar. Sci. 6 (2019)

    Google Scholar 

  28. Tayur, V.M., Suchithra, R.: Review of interoperability approaches in application layer of Internet of Things. In: ICIMIA 2017, pp. 322–326 (2017)

    Google Scholar 

  29. Vaismoradi, M., Jones, J., Turunen, H., Snelgrove, S.: Theme development in qualitative content analysis and thematic analysis. Nurs. Educ. Pract. 6, 100–110 (2016)

    Google Scholar 

  30. Wixom, B.H., Sebastian, I.M., Gregory, R.W.: Data sharing 2.0: new data sharing, new value creation. CISR-Res. Briefings 20(10) (2020)

    Google Scholar 

Download references

Acknowledgements

We would like to thank the participants in the study. This work was supported by SFI SmartOcean NFR Project 309612/F40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keila Lima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lima, K. et al. (2022). Marine Data Sharing: Challenges, Technology Drivers and Quality Attributes. In: Taibi, D., Kuhrmann, M., Mikkonen, T., Klünder, J., Abrahamsson, P. (eds) Product-Focused Software Process Improvement. PROFES 2022. Lecture Notes in Computer Science, vol 13709. Springer, Cham. https://doi.org/10.1007/978-3-031-21388-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21388-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21387-8

  • Online ISBN: 978-3-031-21388-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics