Dynamics of Frequency Characteristics of Visually Evoked Potentials of Electroencephalography During the Work with Brain-Computer Interfaces | SpringerLink
Skip to main content

Dynamics of Frequency Characteristics of Visually Evoked Potentials of Electroencephalography During the Work with Brain-Computer Interfaces

  • Conference paper
  • First Online:
Speech and Computer (SPECOM 2022)

Abstract

The paper verifies the hypothesis of time-dependent dynamics of steady-state visual evoked potentials during a short series of stimulations (15 s) simulating work with brain-computer interfaces. Using deep machine learning of a neural network with direct propagation and known methods of machine classification, the frequency characteristics of the visual evoked potentials of electroencephalography during the work with brain-computer interfaces are analyzed. It is shown that the temporal dynamics of steady-state visual evoked potentials even for such a short period of time can sufficiently change the parameters. It can potentially serve as an obstacle for work with this type of brain-computer interfaces for a number of users. The described approach allows us to confirm the hypothesis that over time the brain shows signs of fatigue, consisting in changes in the frequency-time characteristics of the registered signal. Thus, the human brain shows signs of fatigue during sessions of steady-state visual evoked potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tu, T., Xin, Y., Gao, X., Gao, S.: Chirp-modulated visual evoked potential as a generalization of steady state visual evoked potential. J. Neural Eng. 9(1), 016008 (2012)

    Article  Google Scholar 

  2. Kwak, N.S., Müller, K.R., Lee, S.W.: Toward exoskeleton control based on steady state visual evoked potentials. In: 2014 International Winter Workshop on Brain-Computer Interface (BCI), pp. 1–2. IEEE, Gangwon, Korea (South) (2014)

    Google Scholar 

  3. Balnytė, R., Ulozienė, I., Rastenytė, D., Vaitkus, A., Malcienė, L., Laučkaitė, K.: Diagnostic value of conventional visual evoked potentials applied to patients with multiple sclerosis. Medicina (Kaunas) 47(5), 263–269 (2011)

    Google Scholar 

  4. Markand, O.: Visual evoked potentials. In: Clinical Evoked Potentials, pp. 83–137. Springer, Cham (2020).https://doi.org/10.1007/978-3-030-36955-2_3

  5. Chaudhary, U., Birbaumer, N., Curado, M.R.: Brain-machine interface (BMI) in paralysis. Ann. Phys. Rehabil. Med. 58(1), 9–13 (2015)

    Article  Google Scholar 

  6. Dvoynikova, A., Verkholyak, O., Karpov, A.: Emotion recognition and sentiment analysis of extemporaneous speech transcriptions in Russian. In: Karpov, A., Potapova, R. (eds.) SPECOM 2020. LNCS (LNAI), vol. 12335, pp. 136–144. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60276-5_14

    Chapter  Google Scholar 

  7. Dresvyanskiy, D., Minker, W., Karpov, A.: Deep learning based engagement recognition in highly imbalanced data. In: Karpov, A., Potapova, R. (eds.) SPECOM 2021. LNCS (LNAI), vol. 12997, pp. 166–178. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87802-3_16

    Chapter  Google Scholar 

  8. NEURON-SPECTRUM-4/EPM 21-channel Upgradeable EEG System with EP Capabilities. https://neurosoft.com/en/catalog/eeg/neuron-spectrum-4epm

  9. do Espírito-Santo, R.B., Dias, G.C.B., Bortoloti, R., Huziwara, E.M.: Effect of the number of training trials on the event-related potential correlates of equivalence relations. Learn. Behav. 48, 221–233 (2020)

    Google Scholar 

  10. Mokhtar, S., Elmazeg, E.: Design and implementation of butterworth filter. Int. J. Innovative Res. Sci. Eng. Technol. 9(9), 7975–7983 (2020)

    Google Scholar 

  11. Aminoff, M.J., Goodin, D.S.: Visual evoked potentials. J. Clin. Neurophysiol. Official Publ. Am. Electroencephalographic Soc. 11(5), 493–499 (1994)

    Article  Google Scholar 

  12. Taylor, M., McCulloch, D.: Visual evoked potentials in infants and children. J. Clin. Neurophysiol. Official Publ. Am. Electroencephalographic Soc. 9, 357–372 (1992)

    Article  Google Scholar 

  13. Liasis, A.: Visual evoked potentials. Acta Ophthalmol. 94, S256 (2016)

    Article  Google Scholar 

  14. Carter, J.: Visual evoked potentials. In: Clinical Neurophysiology, 4 edn., Contemporary Neurology Series, pp. 567–578. Oxford Academic, New York (2016)

    Google Scholar 

  15. Kwak, N.S., Müller, K.R., Lee, S.W.: A convolutional neural network for steady state visual evoked potential classification under ambulatory environment. PLoS ONE 12(2), 1–20 (2017)

    Article  Google Scholar 

  16. Nguyen, H., Bottone, S., Kim, K., Chiang, M., Poor, H.V.: Adversarial neural networks for error correcting codes. In: 2021 IEEE Global Communications Conference (GLOBECOM), 2021, pp. 1–6. IEEE, Madrid, Spain (2021)

    Google Scholar 

  17. Kose, U., Deperlioglu, O., Alzubi, J., Patrut, B.: Diagnosing Parkinson by using deep autoencoder neural network. In: Deep Learning for Medical Decision Support Systems. SCI, vol. 909, pp. 73–93. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-6325-6_5

    Chapter  Google Scholar 

  18. Mirjalili, V., Raschka, S., Namboodiri, A., Ross, A.: Semi-adversarial networks: convolutional autoencoders for imparting privacy to face images. In: 2018 International Conference on Biometrics (ICB), pp. 82–89. IEEE, Gold Coast, QLD, Australia (2018)

    Google Scholar 

  19. Bicego, M., Escolano, F.: On learning random forests for random forest-clustering. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 3451–3458. IEEE, Milan, Italy (2021)

    Google Scholar 

  20. Olson. M.: Essays on Random Forest Ensembles (PhD dissertation), p. 146 (2018)

    Google Scholar 

  21. Nayyar, A., Mahapatra, B.: Effective classification and handling of incoming data packets in mobile ad hoc networks (MANETs) using random forest ensemble technique (RF/ET). In: Sharma, N., Chakrabarti, A., Balas, V.E. (eds.) Data Management, Analytics and Innovation. AISC, vol. 1016, pp. 431–444. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-9364-8_31

    Chapter  Google Scholar 

  22. Fahim, A.: K and starting means for k-means algorithm. J. Comput. Sci. 55, 101445 (2021)

    Article  Google Scholar 

  23. Turovskiy, Y., Volf, D., Iskhakova, A., Iskhakov, A.: Neuro-computer interface control of cyber-physical systems. In: Jordan, V., Tarasov, I., Faerman, V. (eds.) HPCST 2021. CCIS, vol. 1526, pp. 338–353. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94141-3_27

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported by RFBR grant 19–29-01156 mk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Iskhakova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Turovsky, Y., Wolf, D., Meshcheryakov, R., Iskhakova, A. (2022). Dynamics of Frequency Characteristics of Visually Evoked Potentials of Electroencephalography During the Work with Brain-Computer Interfaces. In: Prasanna, S.R.M., Karpov, A., Samudravijaya, K., Agrawal, S.S. (eds) Speech and Computer. SPECOM 2022. Lecture Notes in Computer Science(), vol 13721. Springer, Cham. https://doi.org/10.1007/978-3-031-20980-2_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20980-2_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20979-6

  • Online ISBN: 978-3-031-20980-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics