Detecting Video Anomalous Events with an Enhanced Abnormality Score | SpringerLink
Skip to main content

Detecting Video Anomalous Events with an Enhanced Abnormality Score

  • Conference paper
  • First Online:
PRICAI 2022: Trends in Artificial Intelligence (PRICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13629))

Included in the following conference series:

Abstract

Detecting video anomalous events is vital for human monitoring. Anomalous events usually contain abnormal actions with exaggerated motion and little motion. We define the former and the latter as dynamic anomalies and static anomalies, respectively. We define the video data of events where a few persons perform diverse actions indoors as Indoor Event Data (IED). Many frame prediction approaches have succeeded in detecting dynamic anomalies. However, they are prone to overlooking static anomalies in IED. To solve this problem, we propose an Enhanced Abnormality Score (EAS), which is a combination of prediction, dynamic, appearance, and motion scores. To specifically target static anomalies, we calculate a score to evaluate the dynamic degrees of actions. We use an appearance score of a frame to detect static anomalies from appearance. This score is generated from a clustering-based distance of a pre-trained CNN feature. We also use a motion score based on flow reconstruction to balance the appearance score. We conduct extensive experiments on two datasets involving indoor human activities. Quantitative and qualitative experimental results show that our proposal achieves the best performance among its variants and the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We rescale the pixel values in the range \([-1,1]\).

  2. 2.

    The 9 actions are “throwing”, “kicking something”, “hopping”, “jumping up”, “falling down”, “vomiting”, “punching someone”, “kicking someone”, and “pushing someone”.

  3. 3.

    The 11 actions are “shooting at basket”, “tennis bat swing”, “running on the spot”, “throwing up hat”, “hitting with object”, “grabbing stuff”, “wielding knife”, “knocking over”, “shooting with gun”, “stepping on foot”, and “supporting somebody”.

  4. 4.

    Frame-Pred [22]: https://github.com/feiyuhuahuo/Anomaly_Prediction.

  5. 5.

    HF\(^2\)-VAD (Flow Recon, ML-MemAE-SC) [23]: https://github.com/LiUzHiAn/hf2vad.

  6. 6.

    MNAD [30]: https://github.com/cvlab-yonsei/MNAD

    MemAE [10]: https://github.com/lyn1874/memAE

    VEC [38]: https://github.com/yuguangnudt/VEC_VAD

    RIAD [40]: https://github.com/plutoyuxie/Reconstruction-by-inpainting-for-visual-anomaly-detection.

References

  1. Cai, R., Zhang, H., Liu, W., Gao, S., Hao, Z.: Appearance-motion memory consistency network for video anomaly detection. In: AAAI (2021)

    Google Scholar 

  2. Chang, Y., Tu, Z., Xie, W., Yuan, J.: Clustering driven deep autoencoder for video anomaly detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 329–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_20

    Chapter  Google Scholar 

  3. Chong, Y.S., Tay, Y.H.: Abnormal event detection in videos using spatiotemporal autoencoder. In: ISNN (2017)

    Google Scholar 

  4. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: ICML (2006)

    Google Scholar 

  5. Deguchi, Y., Takayama, D., Takano, S., Scuturici, V., Petit, J., Suzuki, E.: Skeleton clustering by multi-robot monitoring for fall risk discovery. J. Intell. Inf. Syst. 48(1), 75–115 (2017)

    Article  Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  7. Dizaji, K.G., Herandi, A., Deng, C., Cai, W., Huang, H.: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization. In: ICCV (2017)

    Google Scholar 

  8. Dong, N., Suzuki, E.: GIAD: generative inpainting-based anomaly detection via self-supervised learning for human monitoring. In: PRICAI (2021)

    Google Scholar 

  9. Georgescu, M., Barbalau, A., Ionescu, R.T., Khan, F.S., Popescu, M., Shah, M.: Anomaly detection in video via self-supervised and multi-task learning. In: CVPR (2021)

    Google Scholar 

  10. Gong, D., et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: ICCV (2019)

    Google Scholar 

  11. Guo, X., Gao, L., Liu, X., Yin, J.: Improved deep embedded clustering with local structure preservation. In: IJCAI (2017)

    Google Scholar 

  12. Guo, X., et al.: Discriminative-generative dual memory video anomaly detection. CoRR abs/2104.14430 (2021). https://arxiv.org/abs/2104.14430

  13. Han, T., Xie, W., Zisserman, A.: Self-supervised co-training for video representation learning. In: NIPS (2020)

    Google Scholar 

  14. Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., Davis, L.S.: Learning temporal regularity in video sequences. In: CVPR (2016)

    Google Scholar 

  15. Hatae, Y., Yang, Q., Fadjrimiratno, M.F., Li, Y., Matsukawa, T., Suzuki, E.: Detecting anomalous regions from an image based on deep captioning. In: VISIGRAPP (2020)

    Google Scholar 

  16. Hinami, R., Mei, T., Satoh, S.: Joint detection and recounting of abnormal events by learning deep generic knowledge. In: ICCV (2017)

    Google Scholar 

  17. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: evolution of optical flow estimation with deep networks. In: CVPR (2017)

    Google Scholar 

  18. Ionescu, R.T., Khan, F.S., Georgescu, M., Shao, L.: Object-centric auto-encoders and dummy anomalies for abnormal event detection in video. In: CVPR (2019)

    Google Scholar 

  19. Jalal, A., Kamal, S., Kim, D.: A depth video sensor-based life-logging human activity recognition system for elderly care in smart indoor environments. Sensors 14(7), 11735–11759 (2014)

    Article  Google Scholar 

  20. Jalal, A., Kamal, S., Kim, D.: A depth video-based human detection and activity recognition using multi-features and embedded hidden Markov models for health care monitoring systems. Int. J. Interact. Multim. Artif. Intell. 4(4), 54–62 (2017)

    Google Scholar 

  21. Liu, J., Shahroudy, A., Perez, M., Wang, G., Duan, L., Kot, A.C.: NTU RGB+D 120: a large-scale benchmark for 3D human activity understanding. IEEE Trans. Pattern Anal. Mach. Intell. 42(10), 2684–2701 (2020)

    Article  Google Scholar 

  22. Liu, W., Luo, W., Lian, D., Gao, S.: Future frame prediction for anomaly detection - a new baseline. In: CVPR (2018)

    Google Scholar 

  23. Liu, Z., Nie, Y., Long, C., Zhang, Q., Li, G.: A hybrid video anomaly detection framework via memory-augmented flow reconstruction and flow-guided frame prediction. In: ICCV (2021)

    Google Scholar 

  24. Lu, C., Shi, J., Jia, J.: Abnormal event detection at 150 FPS in MATLAB. In: ICCV (2013)

    Google Scholar 

  25. Lu, Y., Kumar, K.M., Nabavi, S.S., Wang, Y.: Future frame prediction using convolutional VRNN for anomaly detection. In: AVSS (2019)

    Google Scholar 

  26. Luo, W., Liu, W., Gao, S.: Remembering history with convolutional LSTM for anomaly detection. In: ICME (2017)

    Google Scholar 

  27. Luo, W., Liu, W., Gao, S.: A revisit of sparse coding based anomaly detection in stacked RNN framework. In: ICCV (2017)

    Google Scholar 

  28. Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes. In: CVPR (2010)

    Google Scholar 

  29. Nguyen, T., Meunier, J.: Anomaly detection in video sequence with appearance-motion correspondence. In: ICCV (2019)

    Google Scholar 

  30. Park, H., Noh, J., Ham, B.: Learning memory-guided normality for anomaly detection. In: CVPR (2020)

    Google Scholar 

  31. Sargano, A.B., Angelov, P., Habib, Z.: A comprehensive review on handcrafted and learning-based action representation approaches for human activity recognition. Appl. Sci. 7(1) (2017)

    Google Scholar 

  32. Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: NTU RGB+D: a large scale dataset for 3D human activity analysis. In: CVPR (2016)

    Google Scholar 

  33. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  34. Sultani, W., Chen, C., Shah, M.: Real-world anomaly detection in surveillance videos. In: CVPR (2018)

    Google Scholar 

  35. Tang, Y., Zhao, L., Zhang, S., Gong, C., Li, G., Yang, J.: Integrating prediction and reconstruction for anomaly detection. Pattern Recognit. Lett. 129, 123–130 (2020)

    Article  Google Scholar 

  36. Vu, H., Nguyen, T.D., Le, T., Luo, W., Phung, D.Q.: Robust anomaly detection in videos using multilevel representations. In: AAAI (2019)

    Google Scholar 

  37. Ye, M., Peng, X., Gan, W., Wu, W., Qiao, Y.: ANOPCN: video anomaly detection via deep predictive coding network. In: MM (2019)

    Google Scholar 

  38. Yu, G., et al.: Cloze test helps: effective video anomaly detection via learning to complete video events. In: MM (2020)

    Google Scholar 

  39. Zaheer, M.Z., Mahmood, A., Astrid, M., Lee, S.-I.: CLAWS: clustering assisted weakly supervised learning with normalcy suppression for anomalous event detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 358–376. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_22

    Chapter  Google Scholar 

  40. Zavrtanik, V., Kristan, M., Skocaj, D.: Reconstruction by inpainting for visual anomaly detection. Pattern Recogn. 112, 107706 (2021)

    Article  Google Scholar 

  41. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: a new data clustering algorithm and its applications. Data Min. Knowl. Discov. 1(2), 141–182 (1997)

    Article  Google Scholar 

  42. Zhou, J.T., Zhang, L., Fang, Z., Du, J., Peng, X., Xiao, Y.: Attention-driven loss for anomaly detection in video surveillance. IEEE Trans. Circuits Syst. Video Technol. 30(12), 4639–4647 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by JST, the establishment of university fellowships towards the creation of science technology innovation, Grant Number JPMJFS2132.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liheng Shen or Einoshin Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, L., Matsukawa, T., Suzuki, E. (2022). Detecting Video Anomalous Events with an Enhanced Abnormality Score. In: Khanna, S., Cao, J., Bai, Q., Xu, G. (eds) PRICAI 2022: Trends in Artificial Intelligence. PRICAI 2022. Lecture Notes in Computer Science, vol 13629. Springer, Cham. https://doi.org/10.1007/978-3-031-20862-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20862-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20861-4

  • Online ISBN: 978-3-031-20862-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics