Deep Learning Based Super-Resolution for Medical Volume Visualization with Direct Volume Rendering | SpringerLink
Skip to main content

Deep Learning Based Super-Resolution for Medical Volume Visualization with Direct Volume Rendering

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13598))

Included in the following conference series:

Abstract

Modern-day display systems demand high-quality rendering. However, rendering at higher resolution requires a large number of data samples and is computationally expensive. Recent advances in deep learning-based image and video super-resolution techniques motivate us to investigate such networks for high fidelity upscaling of frames rendered at a lower resolution to a higher resolution. While our work focuses on super-resolution of medical volume visualization performed with direct volume rendering, it is also applicable for volume visualization with other rendering techniques. We propose a learning-based technique where our proposed system uses color information along with other supplementary features gathered from our volume renderer to learn efficient upscaling of a low resolution rendering to a higher resolution space. Furthermore, to improve temporal stability, we also implement the temporal reprojection technique for accumulating history samples in volumetric rendering. Our method allows high-quality reconstruction of images from highly aliased input as shown in Fig. 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anagun, Y., Isik, S., Seke, E.: Srlibrary: comparing different loss functions for super-resolution over various convolutional architectures. J. Vis. Commun. Image Represent. 61, 178–187 (2019). https://doi.org/10.1016/j.jvcir.2019.03.027

    Article  Google Scholar 

  2. Chan, K.C.K., Wang, X., Yu, K., Dong, C., Loy, C.C.: BasicVSR: the search for essential components in video super-resolution and beyond. CoRR abs/2012.02181 (2020). https://arxiv.org/abs/2012.02181

  3. Charbonnier, P., Blanc-Feraud, L., Aubert, G., Barlaud, M.: Two deterministic half-quadratic regularization algorithms for computed imaging. In: Proceedings of 1st International Conference on Image Processing, vol. 2, pp. 168–172 (1994). https://doi.org/10.1109/ICIP.1994.413553

  4. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016). https://doi.org/10.1109/TPAMI.2015.2439281

    Article  Google Scholar 

  5. Edelsten, A., Jukarainen, P., Patney, A.: Truly next-gen: adding deep learning to games and graphics. In: NVIDIA Sponsored Sessions (Game Dev Conference) (2019)

    Google Scholar 

  6. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K. (eds.) Advances in Neural Information Processing Systems. vol. 27. Curran Associates, Inc (2014)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE CVPR, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  8. Hofmann, N., Martschinke, J., Engel, K., Stamminger, M.: Neural denoising for path tracing of medical volumetric data. Proc. ACM Comput. Graph. Interact. Tech. 3(2), 1–18 (2020). https://doi.org/10.1145/3406181

    Article  Google Scholar 

  9. Isobe, T., Jia, X., Gu, S., Li, S., Wang, S., Tian, Q.: Video super-resolution with recurrent structure-detail network. ArXiv abs/2008.00455 (2020)

    Google Scholar 

  10. Jo, Y., Oh, S.W., Kang, J., Kim, S.J.: Deep video super-resolution network using dynamic upsampling filters without explicit motion compensation. In: IEEE CVPR, pp. 3224–3232 (2018). https://doi.org/10.1109/CVPR.2018.00340

  11. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  12. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: IEEE CVPR, pp. 1646–1654 (2016). https://doi.org/10.1109/CVPR.2016.182

  13. Kim, T.H., Sajjadi, M.S.M., Hirsch, M., Schölkopf, B.: Spatio-temporal transformer network for video restoration. In: ECCV (2018)

    Google Scholar 

  14. Koskela, M., et al.: Blockwise multi-order feature regression for real-time path-tracing reconstruction. ACM Trans. Graph. 38(5), 1–14 (2019). https://doi.org/10.1145/3269978

    Article  Google Scholar 

  15. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR, pp. 105–114 (07 2017). https://doi.org/10.1109/CVPR.2017.19

  16. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: IEEE CVPR Workshops, pp. 1132–1140 (2017). https://doi.org/10.1109/CVPRW.2017.151

  17. Lottes, T.: TSSAA temporal super sampling AA (2011). https://timothylottes.blogspot.com/2011/04/tssaa-temporal-super-sampling-aa.html

  18. Pedersen, L.J.F.P.: Temporal reprojection anti-aliasing in inside (2018). https://s3.amazonaws.com/arena-attachments/655504/c5c71c5507f0f8bf344252958254fb7d.pdf?1468341463

  19. Sardana, A.: Accelerating inference up to 6x faster in pytorch with torch-tensorrt (2021). https://developer.nvidia.com/blog/accelerating-inference-up-to-6x-faster-in-pytorch-with-torch-tensorrt/

  20. Weiss, S., Chu, M., Thuerey, N., Westermann, R.: Volumetric isosurface rendering with deep learning-based super-resolution. IEEE Trans. Vis. Comput. Graph. 27(6), 3064–3078 (2021). https://doi.org/10.1109/TVCG.2019.2956697

    Article  Google Scholar 

  21. Xiao, L., Nouri, S., Chapman, M., Fix, A., Lanman, D., Kaplanyan, A.: Neural supersampling for real-time rendering. ACM Trans. Graph. 39(4), 142:1–142:2 (2020). https://doi.org/10.1145/3386569.3392376

  22. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: IEEE CVPR, pp. 2472–2481 (2018). https://doi.org/10.1109/CVPR.2018.00262

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudarshan Devkota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Devkota, S., Pattanaik, S. (2022). Deep Learning Based Super-Resolution for Medical Volume Visualization with Direct Volume Rendering. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2022. Lecture Notes in Computer Science, vol 13598. Springer, Cham. https://doi.org/10.1007/978-3-031-20713-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20713-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20712-9

  • Online ISBN: 978-3-031-20713-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics