Abstract
The pandemic of these very recent years has led to a dramatic increase in people wearing protective masks in public venues. This poses obvious challenges to the pervasive use of face recognition technology that now is suffering a decline in performance. One way to address the problem is to revert to face recovery methods as a preprocessing step. Current approaches to face reconstruction and manipulation leverage the ability to model the face manifold, but tend to be generic. We introduce a method that is specific for the recovery of the face image from an image of the same individual wearing a mask. We do so by designing a specialized GAN inversion method, based on an appropriate set of losses for learning an unmasking encoder. With extensive experiments, we show that the approach is effective at unmasking face images. In addition, we also show that the identity information is preserved sufficiently well to improve face verification performance based on several face recognition benchmark datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdal, R., Qin, Y., Wonka, P.: Image2StyleGAN: how to embed images into the styleGAN latent space? In: IEEE ICCV, pp. 4432–4441 (2019)
Abdal, R., Zhu, P., Mitra, N.J., Wonka, P.: Labels4Free: unsupervised segmentation using StyleGAN. In: IEEE ICCV, pp. 13970–13979 (2021)
Anwar, A., Raychowdhury, A.: Masked face recognition for secure authentication. arXiv preprint arXiv:2008.11104 (2020)
Cabani, A., Hammoudi, K., Benhabiles, H., Melkemi, M.: MaskedFace-Net-a dataset of correctly/incorrectly masked face images in the context of COVID-19. Smart Health 19, 100144 (2021)
Chen, Y.A., Chen, W.C., Wei, C.P., Wang, Y.C.F.: Occlusion-aware face inpainting via generative adversarial networks. In: IEEE ICIP, pp. 1202–1206. IEEE (2017)
Cheng, L., Wang, J., Gong, Y., Hou, Q.: Robust deep auto-encoder for occluded face recognition. In: ACM International Conference on Multimedia, pp. 1099–1102 (2015)
Daras, G., Dean, J., Jalal, A., Dimakis, A.G.: Intermediate layer optimization for inverse problems using deep generative models. arXiv preprint arXiv:2102.07364 (2021)
Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: IEEE CVPR, pp. 4690–4699 (2019)
Deng, Y., Dai, Q., Zhang, Z.: Graph Laplace for occluded face completion and recognition. IEEE TIP 20(8), 2329–2338 (2011)
Din, N.U., Javed, K., Bae, S., Yi, J.: A novel GAN-based network for unmasking of masked face. IEEE Access 8, 44276–44287 (2020)
Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning. arXiv preprint arXiv:1605.09782 (2016)
Fidler, S., Skocaj, D., Leonardis, A.: Combining reconstructive and discriminative subspace methods for robust classification and regression by subsampling. IEEE PAMI 28(3), 337–350 (2006)
Gao, R., Grauman, K.: From one-trick ponies to all-rounders: on-demand learning for image restoration. arXiv preprint arXiv:1612.01380 (2016)
Ge, S., Li, C., Zhao, S., Zeng, D.: Occluded face recognition in the wild by identity-diversity inpainting. IEEE T-CSVT 30(10), 3387–3397 (2020)
Ge, S., Li, J., Ye, Q., Luo, Z.: Detecting masked faces in the wild with LLE-CNNs. In: IEEE CVPR, pp. 2682–2690 (2017)
Ghosh, P., Zietlow, D., Black, M.J., Davis, L.S., Hu, X.: InvGAN: invertable GANs. arXiv preprint arXiv:2112.04598 (2021)
He, Z., Zuo, W., Kan, M., Shan, S., Chen, X.: AttGan: facial attribute editing by only changing what you want. IEEE TIP 28(11), 5464–5478 (2019)
Horé, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: ICPR, pp. 2366–2369 (2010)
Hu, B., Zheng, Z., Liu, P., Yang, W., Ren, M.: Unsupervised eyeglasses removal in the wild. IEEE Trans. Cybern. 51(9), 4373–4385 (2020)
Huang, G.B., Mattar, M., Lee, H., Learned-Miller, E.: Learning to align from scratch. In: NIPS (2012)
Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. (ToG) 36(4), 1–14 (2017)
Iliadis, M., Wang, H., Molina, R., Katsaggelos, A.K.: Robust and low-rank representation for fast face identification with occlusions. IEEE TIP 26(5), 2203–2218 (2017)
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: IEEE CVPR, pp. 4401–4410 (2019)
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: IEEE CVPR, pp. 8110–8119 (2020)
Leonardis, A., Bischof, H.: Robust recognition using eigenimages. Comput. Vis. Image Underst. 78(1), 99–118 (2000)
Li, C., Ge, S., Zhang, D., Li, J.: Look through masks: towards masked face recognition with de-occlusion distillation. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 3016–3024 (2020)
Li, Y., Liu, S., Yang, J., Yang, M.H.: Generative face completion. In: IEEE CVPR, pp. 3911–3919 (2017)
Li, Y., Feng, J.: Reconstruction based face occlusion elimination for recognition. Neurocomputing 101, 68–72 (2013)
Li, Z., Hu, Y., He, R., Sun, Z.: Learning disentangling and fusing networks for face completion under structured occlusions. Pattern Recogn. 99, 107073 (2020)
Liu, G., Reda, F.A., Shih, K.J., Wang, T.C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: ECCV 2018, pp. 85–100 (2018)
Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE ICCV, pp. 3730–3738 (2015)
Luan, X., Fang, B., Liu, L., Yang, W., Qian, J.: Extracting sparse error of robust PCA for face recognition in the presence of varying illumination and occlusion. Pattern Recogn. 47(2), 495–508 (2014)
Ma, X., Zhou, X., Huang, H., Jia, G., Chai, Z., Wei, X.: Contrastive attention network with dense field estimation for face completion. Pattern Recogn. 124, 108465 (2022)
Menon, S., Damian, A., Hu, S., Ravi, N., Rudin, C.: Pulse: self-supervised photo upsampling via latent space exploration of generative models. In: IEEE CVPR, pp. 2437–2445 (2020)
Mishra, S., Majumdar, P., Dosi, M., Vatsa, M., Singh, R.: Dual sensor Indian masked face dataset. In: IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021), pp. 1–8. IEEE (2021)
Ngan, M., Grother, P., Hanaoka, K.: Ongoing face recognition vendor test (FRVT) part 6a: face recognition accuracy with masks using pre-COVID-19 algorithms. Technical report, NIST (2020)
Nitzan, Y., Bermano, A., Li, Y., Cohen-Or, D.: Face identity disentanglement via latent space mapping. arXiv preprint arXiv:2005.07728 (2020)
Park, J.S., Oh, Y.H., Ahn, S.C., Lee, S.W.: Glasses removal from facial image using recursive error compensation. IEEE PAMI 27(5), 805–811 (2005)
Pernuš, M., Štruc, V., Dobrišek, S.: High resolution face editing with masked GAN latent code optimization. arXiv preprint arXiv:2103.11135 (2021)
Pidhorskyi, S., Adjeroh, D.A., Doretto, G.: Adversarial latent autoencoders. In: IEEE CVPR, pp. 14104–14113 (2020)
Richardson, E., et al.: Encoding in style: a StyleGAN encoder for image-to-image translation. In: IEEE CVPR, pp. 2287–2296 (2021)
Roich, D., Mokady, R., Bermano, A.H., Cohen-Or, D.: Pivotal tuning for latent-based editing of real images. arXiv preprint arXiv:2106.05744 (2021)
Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: IEEE CVPR, pp. 815–823 (2015)
Shukor, M., Yao, X., Damodaran, B.B., Hellier, P.: Semantic and geometric unfolding of StyleGAN latent space. arXiv preprint arXiv:2107.04481 (2021)
Su, Y., Yang, Y., Guo, Z., Yang, W.: Face recognition with occlusion. In: IAPR Asian Conference on Pattern Recognition (ACPR), pp. 670–674. IEEE (2015)
Trigueros, D.S., Meng, L., Hartnett, M.: Enhancing convolutional neural networks for face recognition with occlusion maps and batch triplet loss. Image Vis. Comput. 79, 99–108 (2018)
Wang, M., Hu, Z., Sun, Z., Zhao, S., Sun, M.: Varying face occlusion detection and iterative recovery for face recognition. J. Electron. Imaging 26(3), 033009 (2017)
Wang, Z., et al.: Masked face recognition dataset and application. arXiv preprint arXiv:2003.09093 (2020)
Wei, T., et al.: A simple baseline for StyleGAN inversion. arXiv preprint arXiv:2104.07661 (2021)
Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. In: Advances in Neural Information Processing Systems, vol. 25 (2012)
Xinyi, Z., Runqing, J., Tianxiang, H., Hao, Y.: Identity preserving face completion with landmark based generative adversarial network (2021)
Xiong, W., et al.: Foreground-aware image inpainting. In: IEEE CVPR, pp. 5840–5848 (2019)
Zeng, D., Veldhuis, R., Spreeuwers, L.: A survey of face recognition techniques under occlusion. IET Biometrics 10(6), 581–606 (2021)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: IEEE CVPR, pp. 586–595 (2018)
Zhao, F., Feng, J., Zhao, J., Yang, W., Yan, S.: Robust LSTM-autoencoders for face de-occlusion in the wild. IEEE TIP 27, 778–790 (2016)
Zhao, S., Hu, Z.P.: A modular weighted sparse representation based on fisher discriminant and sparse residual for face recognition with occlusion. Inf. Proc. Lett. 115(9), 677–683 (2015)
Zhu, P., Abdal, R., Qin, Y., Femiani, J., Wonka, P.: Improved StyleGAN embedding: where are the good Latents? arXiv preprint arXiv:2012.09036 (2020)
Acknowledgements
This material is based upon work supported in part by the Center for Identification Technology Research and the National Science Foundation under Grants No. 1650474 and No. 1920920.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Randhawa, Z.A., Patel, S., Adjeroh, D.A., Doretto, G. (2022). Learning Representations for Masked Facial Recovery. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2022. Lecture Notes in Computer Science, vol 13598. Springer, Cham. https://doi.org/10.1007/978-3-031-20713-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-20713-6_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20712-9
Online ISBN: 978-3-031-20713-6
eBook Packages: Computer ScienceComputer Science (R0)