Abstract
The cloud healthcare system is achieved based on the integration between Internet technologies and the traditional healthcare system. By combining online diagnosis and offline treatment, such a system can effectively reduce patients’ waiting time and also improve idle medical resources’ utilization ratio. In this paper, to optimize the balance of patient assignment (PA) in the cloud healthcare system, a genetic algorithm (GA) is proposed. Each individual in the proposed GA represents a solution for the PA optimization problem. Better solutions are generated by executing crossover, mutation, and selection operators in GA. Experiments verify that the proposed GA is effective in optimizing the PA problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barros, P.P., Olivella, P.: Waiting lists and patient selection. J. Econ. Manage. Strategy 14(3), 623–646 (2005). https://doi.org/10.1111/j.1530-9134.2005.00076.x
Chawasemerwa, T., Taifa, I., Hartmann, D.: Development of a doctor scheduling system: a constraint satisfaction and penalty minimisation scheduling model. Int. J. Res. Ind. Eng. 7(4), 396–422 (2018). https://doi.org/10.22105/riej.2018.160257.1068
Chen, Z.G., Zhan, Z.H., Wang, H., Zhang, J.: Distributed individuals for multiple peaks: a novel differential evolution for multimodal optimization problems. IEEE Trans. Evol. Comput. 24(4), 708–719 (2020). https://doi.org/10.1109/tevc.2019.2944180
Conforti, D., Guerriero, F., Guido, R.: Optimization models for radiotherapy patient scheduling. 4Or, 6(3), 263–278 (2007). https://doi.org/10.1007/s10288-007-0050-8
Du, J., Michalska, S., Subramani, S., Wang, H., Zhang, Y.: Neural attention with character embeddings for hay fever detection from Twitter. Health Inf. Sci. Syst. 7(1), 1–7 (2019). https://doi.org/10.1007/s13755-019-0084-2
Ge, Y.F., et al.: A benefit-driven genetic algorithm for balancing privacy and utility in database fragmentation. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 771–776. ACM (2019). https://doi.org/10.1145/3321707.3321778
Ge, Y.-F., Cao, J., Wang, H., Zhang, Y., Chen, Z.: Distributed differential evolution for anonymity-driven vertical fragmentation in outsourced data storage. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds.) WISE 2020. LNCS, vol. 12343, pp. 213–226. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62008-0_15
Ge, Y.F., Orlowska, M., Cao, J., Wang, H., Zhang, Y.: Knowledge transfer-based distributed differential evolution for dynamic database fragmentation. Knowl.-Based Syst. 229, 107325 (2021). https://doi.org/10.1016/j.knosys.2021.107325
Ge, Y.F., Orlowska, M., Cao, J., Wang, H., Zhang, Y.: MDDE: multitasking distributed differential evolution for privacy-preserving database fragmentation. VLDB J. 31, 1–19 (2021). https://doi.org/10.1007/s00778-021-00718-w
Ge, Y.F., et al.: Distributed memetic algorithm for outsourced database fragmentation. IEEE Trans. Cybern. 51(10), 4808–4821 (2021). https://doi.org/10.1109/tcyb.2020.3027962
Ge, Y.F., Yu, W.J., Zhan, Z.H., Zhang, J.: Competition-based distributed differential evolution. In: 2018 IEEE Congress on Evolutionary Computation (CEC). IEEE (2018). https://doi.org/10.1109/cec.2018.8477758
Ge, Y.F., Yu, W.J., Zhang, J.: Diversity-based multi-population differential evolution for large-scale optimization. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion. ACM (2016). https://doi.org/10.1145/2908961.2908995
Gijo, E.V., Antony, J.: Reducing patient waiting time in outpatient department using lean six sigma methodology. Qual. Reliab. Eng. Int. 30(8), 1481–1491 (2013). https://doi.org/10.1002/qre.1552
He, J., Rong, J., Sun, L., Wang, H., Zhang, Y., Ma, J.: A framework for cardiac arrhythmia detection from IoT-based ECGs. World Wide Web 23(5), 2835–2850 (2020). https://doi.org/10.1007/s11280-019-00776-9
Hossain, N.U.I., Debusk, H., Hasan, M.M.: Reducing patient waiting time in an outpatient clinic: a discrete event simulation (DES) based approach. In: Proceedings of IIE Annual Conference, pp. 241–246. Institute of Industrial and Systems Engineers (IISE) (2017)
Jiang, H., Zhou, R., Zhang, L., Wang, H., Zhang, Y.: Sentence level topic models for associated topics extraction. World Wide Web 22(6), 2545–2560 (2018). https://doi.org/10.1007/s11280-018-0639-1
Lee, J., Park, J., Wang, K., Feng, B., Tennant, M., Kruger, E.: The use of telehealth during the coronavirus (COVID-19) pandemic in oral and maxillofacial surgery - a qualitative analysis. ICST Trans. Scalable Inf. Syst. 9, 172361 (2021). https://doi.org/10.4108/eai.2-12-2021.172361
Li, J.Y., Du, K.J., Zhan, Z.H., Wang, H., Zhang, J.: Distributed differential evolution with adaptive resource allocation. IEEE Trans. Cybern. (2022). https://doi.org/10.1109/tcyb.2022.3153964
Li, Y., Wang, H., Li, Y., Li, L.: Patient assignment scheduling in a cloud healthcare system based on petri net and greedy-based heuristic. Enterp. Inf. Syst. 13(4), 515–533 (2018). https://doi.org/10.1080/17517575.2018.1526323
Mardiah, F.P., Basri, M.H.: The analysis of appointment system to reduce outpatient waiting time at Indonesia’s public hospital. Hum. Resour. Manage. Res. 3(1), 27–33 (2013)
Mirjalili, S.: Evolutionary Algorithms and Neural Networks. SCI, vol. 780. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93025-1
Munavalli, J.R., Rao, S.V., Srinivasan, A., van Merode, G.: Integral patient scheduling in outpatient clinics under demand uncertainty to minimize patient waiting times. Health Inform. J. 26(1), 435–448 (2019). https://doi.org/10.1177/1460458219832044
Pandey, D., Wang, H., Yin, X., Wang, K., Zhang, Y., Shen, J.: Automatic breast lesion segmentation in phase preserved DCE-MRIs. Health Inf. Sci. Syst. 10(1), 1–19 (2022). https://doi.org/10.1007/s13755-022-00176-w
Patrick, J., Puterman, M.L., Queyranne, M.: Dynamic multipriority patient scheduling for a diagnostic resource. Oper. Res. 56(6), 1507–1525 (2008). https://doi.org/10.1287/opre.1080.0590
Price, K.V.: Differential evolution. In: Zelinka, I., Snášel, V., Abraham, A. (eds.) Handbook of Optimization, pp. 187–214. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30504-7_8
Sarki, R., Ahmed, K., Wang, H., Zhang, Y.: Automated detection of mild and multi-class diabetic eye diseases using deep learning. Health Inf. Sci. Syst. 8(1), 1–9 (2020). https://doi.org/10.1007/s13755-020-00125-5
Sarki, R., Ahmed, K., Wang, H., Zhang, Y., Wang, K.: Convolutional neural network for multi-class classification of diabetic eye disease. ICST Trans. Scalable Inf. Syst. 9, 172436 (2021). https://doi.org/10.4108/eai.16-12-2021.172436
Singh, R., Zhang, Y., Wang, H., Miao, Y., Ahmed, K.: Investigation of social behaviour patterns using location-based data - a Melbourne case study. ICST Trans. Scalable Inf. Syst. 8, 166767 (2020). https://doi.org/10.4108/eai.26-10-2020.166767
Siuly, S., et al.: A new framework for automatic detection of patients with mild cognitive impairment using resting-state EEG signals. IEEE Trans. Neural Syst. Rehabil. Eng. 28(9), 1966–1976 (2020). https://doi.org/10.1109/tnsre.2020.3013429
Srinivas, M., Patnaik, L.: Genetic algorithms: a survey. Computer 27(6), 17–26 (1994). https://doi.org/10.1109/2.294849
Supriya, S., Siuly, S., Wang, H., Zhang, Y.: Automated epilepsy detection techniques from electroencephalogram signals: a review study. Health Inf. Sci. Syst. 8(1), 1–15 (2020). https://doi.org/10.1007/s13755-020-00129-1
Takakuwa, S., Wijewickrama, A.: Optimizing staffing schedule in light of patient satisfaction for the whole outpatient hospital ward. In: 2008 Winter Simulation Conference. IEEE (2008). https://doi.org/10.1109/wsc.2008.4736230
Vimalachandran, P., Liu, H., Lin, Y., Ji, K., Wang, H., Zhang, Y.: Improving accessibility of the Australian my health records while preserving privacy and security of the system. Health Inf. Sci. Syst. 8(1), 1–9 (2020). https://doi.org/10.1007/s13755-020-00126-4
Wang, Z.J., et al.: Automatic niching differential evolution with contour prediction approach for multimodal optimization problems. IEEE Trans. Evol. Comput. 24(1), 114–128 (2020). https://doi.org/10.1109/tevc.2019.2910721
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pang, X., Ge, YF., Wang, K. (2022). Genetic Algorithm for Patient Assignment Optimization in Cloud Healthcare System. In: Traina, A., Wang, H., Zhang, Y., Siuly, S., Zhou, R., Chen, L. (eds) Health Information Science. HIS 2022. Lecture Notes in Computer Science, vol 13705. Springer, Cham. https://doi.org/10.1007/978-3-031-20627-6_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-20627-6_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20626-9
Online ISBN: 978-3-031-20627-6
eBook Packages: Computer ScienceComputer Science (R0)